論文の概要: Improve Dense Passage Retrieval with Entailment Tuning
- arxiv url: http://arxiv.org/abs/2410.15801v1
- Date: Mon, 21 Oct 2024 09:18:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:17:50.628290
- Title: Improve Dense Passage Retrieval with Entailment Tuning
- Title(参考訳): エンテインメントチューニングによる高密度パス検索の改善
- Authors: Lu Dai, Hao Liu, Hui Xiong,
- Abstract要約: 検索システムの鍵となるのは、クエリとパスペアの関連スコアを計算することである。
我々は、NLIタスクにおけるエンテーメントの概念と、関連性の主要なクラスが一致していることを観察した。
我々は,高密度レトリバーの埋め込みを改善するために,エンテーメントチューニングと呼ばれる手法を設計する。
- 参考スコア(独自算出の注目度): 22.39221206192245
- License:
- Abstract: Retrieval module can be plugged into many downstream NLP tasks to improve their performance, such as open-domain question answering and retrieval-augmented generation. The key to a retrieval system is to calculate relevance scores to query and passage pairs. However, the definition of relevance is often ambiguous. We observed that a major class of relevance aligns with the concept of entailment in NLI tasks. Based on this observation, we designed a method called entailment tuning to improve the embedding of dense retrievers. Specifically, we unify the form of retrieval data and NLI data using existence claim as a bridge. Then, we train retrievers to predict the claims entailed in a passage with a variant task of masked prediction. Our method can be efficiently plugged into current dense retrieval methods, and experiments show the effectiveness of our method.
- Abstract(参考訳): Retrievalモジュールは、多くの下流のNLPタスクにプラグインして、オープンドメインの質問応答や検索拡張生成などのパフォーマンスを改善することができる。
検索システムの鍵は、クエリとパスペアの関連スコアを計算することである。
しかし、関連性の定義はしばしば曖昧である。
我々は、NLIタスクにおけるエンテーメントの概念と、関連性の主要なクラスが一致していることを観察した。
そこで我々は,高密度レシーバの埋め込みを改善するためのエンテーメントチューニング手法を考案した。
具体的には,既存の請求項をブリッジとして,検索データとNLIデータの形式を統一する。
そこで我々は,探索者に対して,マスク付き予測の異種タスクを通した経路に係わるクレームを予測するよう訓練する。
提案手法は,現在の高密度検索手法に効率的に接続することができ,本手法の有効性を示す実験を行った。
関連論文リスト
- Learning to Retrieve Iteratively for In-Context Learning [56.40100968649039]
イテレーティブ検索は、ポリシー最適化によるイテレーティブな意思決定を可能にする、新しいフレームワークである。
テキスト内学習例を構成するための反復型検索器をインスタンス化し,様々な意味解析タスクに適用する。
ステートエンコーディングのためのパラメータを4M追加するだけで、オフザシェルフの高密度レトリバーをステートフル反復レトリバーに変換する。
論文 参考訳(メタデータ) (2024-06-20T21:07:55Z) - Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
しばしば見過ごされる設計選択は、コーパスが索引付けされる検索単位である。
本稿では,高密度検索のための新しい検索ユニット,命題を提案する。
実験により、提案のような細粒度単位によるコーパスのインデックス付けは、検索タスクにおける通過レベル単位を著しく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2023-12-11T18:57:35Z) - Unsupervised Dense Retrieval with Relevance-Aware Contrastive
Pre-Training [81.3781338418574]
関連性を考慮したコントラスト学習を提案する。
我々は、BEIRおよびオープンドメインQA検索ベンチマークにおいて、SOTAアン教師なしコントリバーモデルを一貫して改善する。
本手法は, 目標コーパスの事前訓練後, BM25に打ち勝つだけでなく, 優れた数発学習者として機能する。
論文 参考訳(メタデータ) (2023-06-05T18:20:27Z) - AugTriever: Unsupervised Dense Retrieval and Domain Adaptation by Scalable Data Augmentation [44.93777271276723]
擬似クエリドキュメントペアを作成することにより,アノテーションフリーでスケーラブルなトレーニングを可能にする2つのアプローチを提案する。
クエリ抽出方法は、元のドキュメントから有能なスパンを選択して擬似クエリを生成する。
転送クエリ生成方法は、要約などの他のNLPタスクのために訓練された生成モデルを使用して、擬似クエリを生成する。
論文 参考訳(メタデータ) (2022-12-17T10:43:25Z) - Bridging the Training-Inference Gap for Dense Phrase Retrieval [104.4836127502683]
密度の高いレトリバーを構築するには、トレーニングやニューラルネットワークの検証など、一連の標準手順が必要である。
本稿では,高密度検索におけるトレーニングと推論のギャップを減らせる方法について検討する。
コーパス全体の小さな部分集合を用いて高密度レトリバーを効率よく検証する方法を提案する。
論文 参考訳(メタデータ) (2022-10-25T00:53:06Z) - RocketQAv2: A Joint Training Method for Dense Passage Retrieval and
Passage Re-ranking [89.82301733609279]
本稿では,高密度経路検索と再ランク付けのための新しい共同学習手法を提案する。
主な貢献は、動的リストワイズ蒸留を導入し、レトリバーと再ランカの両方に統一されたリストワイズトレーニングアプローチを設計することである。
ダイナミック蒸留中は、レトリバーとリランカは、互いの関連情報に応じて適応的に改善することができる。
論文 参考訳(メタデータ) (2021-10-14T13:52:55Z) - Phrase Retrieval Learns Passage Retrieval, Too [77.57208968326422]
文節検索が,文節や文書を含む粗いレベルの検索の基盤となるかを検討する。
句検索システムでは,句検索の精度が向上し,句検索の精度が向上していることを示す。
また,句のフィルタリングやベクトル量子化により,インデックスのサイズを4~10倍に削減できることを示す。
論文 参考訳(メタデータ) (2021-09-16T17:42:45Z) - End-to-End Training of Multi-Document Reader and Retriever for
Open-Domain Question Answering [36.80395759543162]
本稿では,検索拡張されたオープンドメイン質問応答システムに対するエンドツーエンドの差別化学習手法を提案する。
我々は,検索決定を関連文書の集合よりも遅延変数としてモデル化する。
提案手法は,一致点の精度を2~3%向上させる。
論文 参考訳(メタデータ) (2021-06-09T19:25:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。