論文の概要: LiOn-XA: Unsupervised Domain Adaptation via LiDAR-Only Cross-Modal Adversarial Training
- arxiv url: http://arxiv.org/abs/2410.15833v1
- Date: Mon, 21 Oct 2024 09:50:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:18:30.254595
- Title: LiOn-XA: Unsupervised Domain Adaptation via LiDAR-Only Cross-Modal Adversarial Training
- Title(参考訳): LiOn-XA: LiDARによる教師なしドメイン適応
- Authors: Thomas Kreutz, Jens Lemke, Max Mühlhäuser, Alejandro Sanchez Guinea,
- Abstract要約: LiOn-XAは、LiDAR-Only Cross-Modal (X)学習と3D LiDARポイントクラウドセマンティックセマンティックセグメンテーションのためのAdversarial Trainingを組み合わせた、教師なしドメイン適応(UDA)アプローチである。
3つの現実的適応シナリオに関する実験は、我々のアプローチの有効性を実証している。
- 参考スコア(独自算出の注目度): 61.26381389532653
- License:
- Abstract: In this paper, we propose LiOn-XA, an unsupervised domain adaptation (UDA) approach that combines LiDAR-Only Cross-Modal (X) learning with Adversarial training for 3D LiDAR point cloud semantic segmentation to bridge the domain gap arising from environmental and sensor setup changes. Unlike existing works that exploit multiple data modalities like point clouds and RGB image data, we address UDA in scenarios where RGB images might not be available and show that two distinct LiDAR data representations can learn from each other for UDA. More specifically, we leverage 3D voxelized point clouds to preserve important geometric structure in combination with 2D projection-based range images that provide information such as object orientations or surfaces. To further align the feature space between both domains, we apply adversarial training using both features and predictions of both 2D and 3D neural networks. Our experiments on 3 real-to-real adaptation scenarios demonstrate the effectiveness of our approach, achieving new state-of-the-art performance when compared to previous uni- and multi-model UDA methods. Our source code is publicly available at https://github.com/JensLe97/lion-xa.
- Abstract(参考訳): 本稿では,LiDAR-Only Cross-Modal (X) 学習と3次元LiDARポイントクラウドセマンティックセマンティックセグメンテーションのアドバイザリトレーニングを組み合わせて,環境やセンサの設定変化によるドメインギャップを埋める,教師なしドメイン適応(UDA)アプローチであるLiOn-XAを提案する。
ポイントクラウドやRGBイメージデータなどの複数のデータモダリティを利用する既存の作業とは異なり、RGBイメージが利用できないシナリオでは、UDAに対処し、2つの異なるLiDARデータ表現がUDAのために互いに学習可能であることを示す。
より具体的には、3次元のボクセル化点雲を利用して、物体の向きや表面などの情報を提供する2次元投影に基づくレンジ画像と組み合わせて、重要な幾何学的構造を保存する。
両領域間の特徴空間をさらに整合させるため,2次元ニューラルネットワークと3次元ニューラルネットワークの両方の特徴と予測を用いて,敵対的トレーニングを適用した。
提案手法は,従来のユニモデルおよびマルチモデル UDA 手法と比較して,新しい最先端性能を実現し,提案手法の有効性を実証するものである。
ソースコードはhttps://github.com/JensLe97/lion-xa.comで公開されています。
関連論文リスト
- Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection [50.448520056844885]
室内3次元物体検出における非教師なし領域適応のための新しいフレームワークを提案する。
合成データセット3D-FRONTから実世界のデータセットScanNetV2とSUN RGB-Dへの適応結果は、ソースオンリーベースラインよりも9.7%、9.1%のmAP25が顕著に改善されていることを示している。
論文 参考訳(メタデータ) (2024-06-17T08:18:41Z) - CMDA: Cross-Modal and Domain Adversarial Adaptation for LiDAR-Based 3D
Object Detection [14.063365469339812]
LiDARベースの3Dオブジェクト検出法は、ソース(またはトレーニング)データ配布の外部のターゲットドメインにうまく一般化しないことが多い。
画像のモダリティから視覚的セマンティックキューを活用する,CMDA (unsupervised domain adaptation) と呼ばれる新しい手法を提案する。
また、自己学習に基づく学習戦略を導入し、モデルが逆向きに訓練され、ドメイン不変の機能を生成する。
論文 参考訳(メタデータ) (2024-03-06T14:12:38Z) - Self-supervised Learning of LiDAR 3D Point Clouds via 2D-3D Neural Calibration [107.61458720202984]
本稿では,自律走行シーンにおける3次元知覚を高めるための,新しい自己教師型学習フレームワークを提案する。
本稿では,画像とポイントクラウドデータの領域ギャップを埋めるために,学習可能な変換アライメントを提案する。
我々は剛性ポーズを推定するために密度の高い2D-3D対応を確立する。
論文 参考訳(メタデータ) (2024-01-23T02:41:06Z) - Cross-modal & Cross-domain Learning for Unsupervised LiDAR Semantic
Segmentation [82.47872784972861]
対象領域における3次元LiDARセマンティックセマンティックセグメンテーション(DLSS)のラベル付けコストを軽減するため、ペア化された2次元画像と3次元LiDARデータに対して、クロスモーダルドメイン適応について検討した。
本稿では,セマンティックアノテーションを持つ2次元データセットとペアだが注釈のない2次元画像と3次元LiDARデータ(ターゲット)が利用できる新しい3DLSS設定について検討する。
このシナリオで3DLSSを実現するために,クロスモーダル・クロスドメイン学習(CoMoDaL)を提案する。
論文 参考訳(メタデータ) (2023-08-05T14:00:05Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
GAPretrainと呼ばれる新しい幾何学的事前学習フレームワークを提案する。
GAPretrainは、複数の最先端検出器に柔軟に適用可能なプラグアンドプレイソリューションとして機能する。
BEVFormer法を用いて, nuScenes val の 46.2 mAP と 55.5 NDS を実現し, それぞれ 2.7 と 2.1 点を得た。
論文 参考訳(メタデータ) (2023-04-06T14:33:05Z) - LiDAR-CS Dataset: LiDAR Point Cloud Dataset with Cross-Sensors for 3D
Object Detection [36.77084564823707]
ディープラーニングの手法は注釈付きデータに大きく依存しており、ドメインの一般化の問題に直面することが多い。
LiDAR-CSデータセットは、リアルタイムトラフィックにおける3Dオブジェクト検出の領域におけるセンサ関連ギャップに対処する最初のデータセットである。
論文 参考訳(メタデータ) (2023-01-29T19:10:35Z) - CL3D: Unsupervised Domain Adaptation for Cross-LiDAR 3D Detection [16.021932740447966]
クロスLiDAR3D検出のためのドメイン適応は、生データ表現に大きなギャップがあるため困難である。
以上の課題を克服する、教師なしのドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2022-12-01T03:22:55Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
本稿では,これら2つの課題に対処するために,自己教師型LiDARオドメトリー法(SelfVoxeLO)を提案する。
具体的には、生のLiDARデータを直接処理する3D畳み込みネットワークを提案し、3D幾何パターンをよりよく符号化する特徴を抽出する。
我々は,KITTIとApollo-SouthBayという2つの大規模データセット上での手法の性能を評価する。
論文 参考訳(メタデータ) (2020-10-19T09:23:39Z) - Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study [2.6205925938720833]
最先端の手法では、深いニューラルネットワークを使用して、LiDARスキャンの各点のセマンティッククラスを予測する。
LiDAR測定を処理するための強力で効率的な方法は、2次元の画像のような投影を使うことである。
メモリの制約だけでなく、パフォーマンスの向上やランタイムの改善など、さまざまなテクニックを実証する。
論文 参考訳(メタデータ) (2020-04-06T11:08:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。