Hierarchical analytical approach to universal spectral correlations in Brownian Quantum Chaos
- URL: http://arxiv.org/abs/2410.15872v1
- Date: Mon, 21 Oct 2024 10:56:49 GMT
- Title: Hierarchical analytical approach to universal spectral correlations in Brownian Quantum Chaos
- Authors: Tara Kalsi, Alessandro Romito, Henning Schomerus,
- Abstract summary: We develop an analytical approach to the spectral form factor and out-of-time ordered correlators in zero-dimensional Brownian models of quantum chaos.
- Score: 44.99833362998488
- License:
- Abstract: We develop an analytical approach to the spectral form factor and out-of-time ordered correlators in zero-dimensional Brownian models of quantum chaos. The approach expresses these spectral correlations as part of a closed hierarchy of differential equations that can be formulated for all system sizes and in each of the three standard symmetry classes (unitary, orthogonal, and symplectic, as determined by the presence and nature of time reversal symmetry). The hierarchy applies exactly, and in the same form, to Dyson's Brownian motion and all systems with stochastically emerging basis invariance, where the model-dependent information is subsumed in a single dynamical timescale whose explicit form we also establish. We further verify this universality numerically for the Brownian Sachdev-Ye-Kitaev model, for which we find perfect agreement with the analytical predictions of the symmetry class determined by the number of fermions. This results in a complete analytical description of the spectral correlations and allows us to identify which correlations are universal in a large class of models.
Related papers
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Relaxation Fluctuations of Correlation Functions: Spin and Random Matrix Models [0.0]
We study the fluctuation average and variance of certain correlation functions as a diagnostic measure of quantum chaos.
We identify the three distinct phases of the models: the ergodic, the fractal, and the localized phases.
arXiv Detail & Related papers (2024-07-31T14:45:46Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Universality of spectral fluctuations in open quantum chaotic systems [1.1557918404865375]
We study the non-Hermitian and non-unitary ensembles based on the symmetry of matrix elements.
We show that the fluctuation statistics of these ensembles are universal and quantum chaotic systems belonging to OE, UE, and SE.
arXiv Detail & Related papers (2024-01-08T18:30:18Z) - Full range spectral correlations and their spectral form factors in chaotic and integrable models [0.0]
Correlations between the eigenenergies of a system's spectrum can be a defining feature of quantum chaos.
We show how each spectral distance participates in building it -- the linear ramp cannot be formed by short-range energy correlations only.
We illustrate our findings in the XXZ spin chain with disorder, which interpolates between chaotic and integrable behavior.
arXiv Detail & Related papers (2023-11-15T19:00:01Z) - Spectral chaos bounds from scaling theory of maximally efficient
quantum-dynamical scrambling [49.1574468325115]
A key conjecture about the evolution of complex quantum systems towards an ergodic steady state, known as scrambling, is that this process acquires universal features when it is most efficient.
We develop a single- parameter scaling theory for the spectral statistics in this scenario, which embodies exact self-similarity of the spectral correlations along the complete scrambling dynamics.
We establish that scaling predictions are matched by a privileged process, and serve as bounds for other dynamical scrambling scenarios, allowing one to quantify inefficient or incomplete scrambling on all timescales.
arXiv Detail & Related papers (2023-10-17T15:41:50Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Emergent fractal phase in energy stratified random models [0.0]
We study the effects of partial correlations in kinetic hopping terms of long-range random matrix models on their localization properties.
We show that any deviation from the completely correlated case leads to the emergent non-ergodic delocalization in the system.
arXiv Detail & Related papers (2021-06-07T18:00:01Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Models of zero-range interaction for the bosonic trimer at unitarity [91.3755431537592]
We present the construction of quantum Hamiltonians for a three-body system consisting of identical bosons mutually coupled by a two-body interaction of zero range.
For a large part of the presentation, infinite scattering length will be considered.
arXiv Detail & Related papers (2020-06-03T17:54:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.