Random Matrix Theory of the Isospectral twirling
- URL: http://arxiv.org/abs/2012.07681v3
- Date: Mon, 8 Mar 2021 18:57:51 GMT
- Title: Random Matrix Theory of the Isospectral twirling
- Authors: Salvatore F.E. Oliviero, Lorenzo Leone, Francesco Caravelli and
Alioscia Hamma
- Abstract summary: We compute the Isospectral twirling of several classes of important quantities in the analysis of quantum many-body systems.
We show how these quantities clearly separate chaotic quantum dynamics from non chaotic ones.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a systematic construction of probes into the dynamics of
isospectral ensembles of Hamiltonians by the notion of Isospectral twirling,
expanding the scopes and methods of ref.[1]. The relevant ensembles of
Hamiltonians are those defined by salient spectral probability distributions.
The Gaussian Unitary Ensembles (GUE) describes a class of quantum chaotic
Hamiltonians, while spectra corresponding to the Poisson and Gaussian Diagonal
Ensemble (GDE) describe non chaotic, integrable dynamics. We compute the
Isospectral twirling of several classes of important quantities in the analysis
of quantum many-body systems: Frame potentials, Loschmidt Echos, OTOCs,
Entanglement, Tripartite mutual information, coherence, distance to equilibrium
states, work in quantum batteries and extension to CP-maps. Moreover, we
perform averages in these ensembles by random matrix theory and show how these
quantities clearly separate chaotic quantum dynamics from non chaotic ones.
Related papers
- Hierarchical analytical approach to universal spectral correlations in Brownian Quantum Chaos [44.99833362998488]
We develop an analytical approach to the spectral form factor and out-of-time ordered correlators in zero-dimensional Brownian models of quantum chaos.
arXiv Detail & Related papers (2024-10-21T10:56:49Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Thermal equilibrium in Gaussian dynamical semigroups [77.34726150561087]
We characterize all Gaussian dynamical semigroups in continuous variables quantum systems of n-bosonic modes which have a thermal Gibbs state as a stationary solution.
We also show that Alicki's quantum detailed-balance condition, based on a Gelfand-Naimark-Segal inner product, allows the determination of the temperature dependence of the diffusion and dissipation matrices.
arXiv Detail & Related papers (2022-07-11T19:32:17Z) - Dissipative quantum dynamics, phase transitions and non-Hermitian random
matrices [0.0]
We work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems.
We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character.
Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.
arXiv Detail & Related papers (2021-12-10T19:00:01Z) - Non-Equilibrium Many-Body Dynamics Following A Quantum Quench [0.40357531559576965]
We study analytically and numerically the non-equilibrium dynamics of an isolated interacting many-body quantum system following a random quench.
We obtain a generic formulation for describing relaxation dynamics of survival probabilities as a function of rank of interactions.
arXiv Detail & Related papers (2021-11-17T18:55:11Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Isospectral twirling and quantum chaos [0.0]
We show that the most important measures of quantum chaos like frame potentials, scrambling, Loschmidt echo, and out-of-time correlators (OTOCs) can be described by the unified framework of the isospectral twirling.
We show that, by exploiting random matrix theory, these measures of quantum chaos clearly distinguish the finite time profiles of probes to quantum chaos.
arXiv Detail & Related papers (2020-11-11T19:01:08Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z) - Quantum coherence as a signature of chaos [0.0]
We quantify the connection between quantum coherence and quantum chaos at two different levels: quantum states and quantum channels.
We numerically study the coherence of chaotic-vs.integrable eigenstates and find excellent agreement with random matrix theory.
arXiv Detail & Related papers (2020-09-06T15:54:54Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.