Enabling Asymmetric Knowledge Transfer in Multi-Task Learning with Self-Auxiliaries
- URL: http://arxiv.org/abs/2410.15875v1
- Date: Mon, 21 Oct 2024 10:57:25 GMT
- Title: Enabling Asymmetric Knowledge Transfer in Multi-Task Learning with Self-Auxiliaries
- Authors: Olivier Graffeuille, Yun Sing Koh, Joerg Wicker, Moritz Lehmann,
- Abstract summary: We investigate asymmetric task relationships, where knowledge transfer aids the learning of certain tasks while hindering the learning of others.
We propose an optimisation strategy that includes additional cloned tasks named self-auxiliaries into the learning process to flexibly transfer knowledge between tasks asymmetrically.
We demonstrate that asymmetric knowledge transfer provides substantial improvements in performance compared to existing multi-task optimisation strategies on benchmark computer vision problems.
- Score: 4.031100721019478
- License:
- Abstract: Knowledge transfer in multi-task learning is typically viewed as a dichotomy; positive transfer, which improves the performance of all tasks, or negative transfer, which hinders the performance of all tasks. In this paper, we investigate the understudied problem of asymmetric task relationships, where knowledge transfer aids the learning of certain tasks while hindering the learning of others. We propose an optimisation strategy that includes additional cloned tasks named self-auxiliaries into the learning process to flexibly transfer knowledge between tasks asymmetrically. Our method can exploit asymmetric task relationships, benefiting from the positive transfer component while avoiding the negative transfer component. We demonstrate that asymmetric knowledge transfer provides substantial improvements in performance compared to existing multi-task optimisation strategies on benchmark computer vision problems.
Related papers
- Distill Knowledge in Multi-task Reinforcement Learning with
Optimal-Transport Regularization [0.24475591916185496]
In multi-task reinforcement learning, it is possible to improve the data efficiency of training agents by transferring knowledge from other different but related tasks.
Traditional methods rely on Kullback-Leibler regularization to stabilize the transfer of knowledge from one task to the others.
In this work, we explore the direction of replacing the Kullback-Leibler divergence with a novel Optimal transport-based regularization.
arXiv Detail & Related papers (2023-09-27T12:06:34Z) - Multitask Learning with No Regret: from Improved Confidence Bounds to
Active Learning [79.07658065326592]
Quantifying uncertainty in the estimated tasks is of pivotal importance for many downstream applications, such as online or active learning.
We provide novel multitask confidence intervals in the challenging setting when neither the similarity between tasks nor the tasks' features are available to the learner.
We propose a novel online learning algorithm that achieves such improved regret without knowing this parameter in advance.
arXiv Detail & Related papers (2023-08-03T13:08:09Z) - Generalization Performance of Transfer Learning: Overparameterized and
Underparameterized Regimes [61.22448274621503]
In real-world applications, tasks often exhibit partial similarity, where certain aspects are similar while others are different or irrelevant.
Our study explores various types of transfer learning, encompassing two options for parameter transfer.
We provide practical guidelines for determining the number of features in the common and task-specific parts for improved generalization performance.
arXiv Detail & Related papers (2023-06-08T03:08:40Z) - ForkMerge: Mitigating Negative Transfer in Auxiliary-Task Learning [59.08197876733052]
Auxiliary-Task Learning (ATL) aims to improve the performance of the target task by leveraging the knowledge obtained from related tasks.
Sometimes, learning multiple tasks simultaneously results in lower accuracy than learning only the target task, known as negative transfer.
ForkMerge is a novel approach that periodically forks the model into multiple branches, automatically searches the varying task weights.
arXiv Detail & Related papers (2023-01-30T02:27:02Z) - Learning Multi-Task Transferable Rewards via Variational Inverse
Reinforcement Learning [10.782043595405831]
We extend an empowerment-based regularization technique to situations with multiple tasks based on the framework of a generative adversarial network.
Under the multitask environments with unknown dynamics, we focus on learning a reward and policy from unlabeled expert examples.
Our proposed method derives the variational lower bound of the situational mutual information to optimize it.
arXiv Detail & Related papers (2022-06-19T22:32:41Z) - Rethinking Learning Dynamics in RL using Adversarial Networks [79.56118674435844]
We present a learning mechanism for reinforcement learning of closely related skills parameterized via a skill embedding space.
The main contribution of our work is to formulate an adversarial training regime for reinforcement learning with the help of entropy-regularized policy gradient formulation.
arXiv Detail & Related papers (2022-01-27T19:51:09Z) - Phase Transitions in Transfer Learning for High-Dimensional Perceptrons [12.614901374282868]
Transfer learning seeks to improve the generalization performance of a target task by exploiting knowledge learned from a related source task.
The latter question is related to the so-called negative transfer phenomenon, where the transferred source information actually reduces the generalization performance of the target task.
We present a theoretical analysis of transfer learning by studying a pair of related perceptron learning tasks.
arXiv Detail & Related papers (2021-01-06T08:29:22Z) - Measuring and Harnessing Transference in Multi-Task Learning [58.48659733262734]
Multi-task learning can leverage information learned by one task to benefit the training of other tasks.
We analyze the dynamics of information transfer, or transference, across tasks throughout training.
arXiv Detail & Related papers (2020-10-29T08:25:43Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.