論文の概要: Systematic Exploration of Dialogue Summarization Approaches for Reproducibility, Comparative Assessment, and Methodological Innovations for Advancing Natural Language Processing in Abstractive Summarization
- arxiv url: http://arxiv.org/abs/2410.15962v1
- Date: Mon, 21 Oct 2024 12:47:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:21:18.821182
- Title: Systematic Exploration of Dialogue Summarization Approaches for Reproducibility, Comparative Assessment, and Methodological Innovations for Advancing Natural Language Processing in Abstractive Summarization
- Title(参考訳): 抽象要約における自然言語処理の促進のための再現性, 比較評価, 方法論的革新のための対話要約手法の体系的探索
- Authors: Yugandhar Reddy Gogireddy, Jithendra Reddy Gogireddy,
- Abstract要約: 本稿では,対話要約モデルの再現と評価について述べる。
本研究は、AMIデータセットを用いた対話要約モデルの徹底的な検討を含む。
主な目的は、人的評価を通じて、これらのモデルによって生成された要約の有意性と品質を評価することである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Reproducibility in scientific research, particularly within the realm of natural language processing (NLP), is essential for validating and verifying the robustness of experimental findings. This paper delves into the reproduction and evaluation of dialogue summarization models, focusing specifically on the discrepancies observed between original studies and our reproduction efforts. Dialogue summarization is a critical aspect of NLP, aiming to condense conversational content into concise and informative summaries, thus aiding in efficient information retrieval and decision-making processes. Our research involved a thorough examination of several dialogue summarization models using the AMI (Augmented Multi-party Interaction) dataset. The models assessed include Hierarchical Memory Networks (HMNet) and various versions of Pointer-Generator Networks (PGN), namely PGN(DKE), PGN(DRD), PGN(DTS), and PGN(DALL). The primary objective was to evaluate the informativeness and quality of the summaries generated by these models through human assessment, a method that introduces subjectivity and variability in the evaluation process. The analysis began with Dataset 1, where the sample standard deviation of 0.656 indicated a moderate dispersion of data points around the mean.
- Abstract(参考訳): 科学的研究、特に自然言語処理(NLP)領域における再現性は、実験結果の堅牢性を検証するのに不可欠である。
本稿では,対話要約モデルの再現と評価について述べる。
対話要約は,会話内容を簡潔かつ情報的な要約に凝縮し,効率的な情報検索と意思決定プロセスを支援することを目的とした,NLPの重要な側面である。
本研究では,AMI(Augmented Multi-party Interaction)データセットを用いた対話要約モデルの徹底的な検討を行った。
評価されたモデルには階層メモリネットワーク(HMNet)や、PGN(DKE)、PGN(DRD)、PGN(DTS)、PGN(DALL)などがある。
主目的は,評価過程において主観性と変動性を導入する手法である人的評価を通じて,これらのモデルによって生成された要約の情報性と品質を評価することである。
分析はDataset 1から始まり、サンプル標準偏差0.656は平均値に適度な散逸を示した。
関連論文リスト
- Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
本研究では,多種多様なNLPタスクに対して,文内談話特性を評価できるベンチマークを提案する。
ディスコ・ベンチは文学領域における9つの文書レベルのテストセットから構成されており、豊富な談話現象を含んでいる。
また,言語分析のために,対象モデルが談話知識を学習するかどうかを検証できる診断テストスイートを設計する。
論文 参考訳(メタデータ) (2023-07-16T15:18:25Z) - A Survey on Out-of-Distribution Evaluation of Neural NLP Models [8.346304805498988]
敵対的ロバスト性、ドメインの一般化、データセットバイアスは、ニューラルNLPモデルにおけるアウト・オブ・ディストリビューション評価に寄与する3つの研究の活発なラインである。
本調査では,1)統一的な定義の下での3つの研究行を比較し,2)研究行ごとのデータ生成プロセスと評価プロトコルを要約し,3)今後の研究の課題と機会を強調する。
論文 参考訳(メタデータ) (2023-06-27T07:44:25Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
文書要約の品質は、文法や正しさといった客観的な基準と、情報性、簡潔さ、魅力といった主観的な基準で人間の注釈者によって評価することができる。
BLUE/ROUGEのような自動評価手法のほとんどは、上記の次元を適切に捉えることができないかもしれない。
目的と主観の両面から生成されたテキストと参照テキストを比較し,総合的な評価フレームワークを提供するLLMに基づく新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T10:40:59Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Analyzing and Evaluating Faithfulness in Dialogue Summarization [67.07947198421421]
まず,対話要約の忠実度に関するきめ細かな人間の分析を行い,生成した要約の35%以上がソース対話に忠実に一致していないことを観察する。
そこで本研究では,ルールベース変換により生成した複数選択質問を用いたモデルレベルの忠実度評価手法を提案する。
論文 参考訳(メタデータ) (2022-10-21T07:22:43Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
我々は、テキスト分類のためのNLPモデルの統一的な理解を可能にする視覚解析ツールDeepNLPVisを開発した。
主要なアイデアは相互情報に基づく尺度であり、モデルの各レイヤがサンプル内の入力語の情報をどのように保持するかを定量的に説明する。
コーパスレベル、サンプルレベル、単語レベルビジュアライゼーションで構成されるマルチレベルビジュアライゼーションは、全体トレーニングセットから個々のサンプルまでの分析をサポートする。
論文 参考訳(メタデータ) (2022-06-19T08:55:07Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z) - Generating (Factual?) Narrative Summaries of RCTs: Experiments with
Neural Multi-Document Summarization [22.611879349101596]
系統的なレビューから,関連記事の要約を抽象的に要約するために,現代のニューラルモデルを評価する。
現代の要約システムは一貫して流動的で関連するシナプスを生み出すが、必ずしも現実的とは限らない。
論文 参考訳(メタデータ) (2020-08-25T22:22:50Z) - Learning by Semantic Similarity Makes Abstractive Summarization Better [13.324006587838522]
近年のLM, BART, およびベンチマークデータセットCNN/DMの参照要約を比較した。
興味深いことに、モデル生成サマリーは参照サマリーと比較して高いスコアを受け取る。
論文 参考訳(メタデータ) (2020-02-18T17:59:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。