Karush-Kuhn-Tucker Condition-Trained Neural Networks (KKT Nets)
- URL: http://arxiv.org/abs/2410.15973v1
- Date: Mon, 21 Oct 2024 12:59:58 GMT
- Title: Karush-Kuhn-Tucker Condition-Trained Neural Networks (KKT Nets)
- Authors: Shreya Arvind, Rishabh Pomaje, Rajshekhar V Bhat,
- Abstract summary: We present a novel approach to solving convex optimization problems by leveraging the Karush-Kuhn-Tucker (KKT) conditions.
Similar to Theory-Trained Neural Networks (TTNNs), the parameters of the convex optimization problem are input to the neural network.
A choice for the loss function in this case is a loss, which we refer to as the KKT Loss, that measures how well the network's outputs satisfy the KKT conditions.
- Score: 0.0
- License:
- Abstract: This paper presents a novel approach to solving convex optimization problems by leveraging the fact that, under certain regularity conditions, any set of primal or dual variables satisfying the Karush-Kuhn-Tucker (KKT) conditions is necessary and sufficient for optimality. Similar to Theory-Trained Neural Networks (TTNNs), the parameters of the convex optimization problem are input to the neural network, and the expected outputs are the optimal primal and dual variables. A choice for the loss function in this case is a loss, which we refer to as the KKT Loss, that measures how well the network's outputs satisfy the KKT conditions. We demonstrate the effectiveness of this approach using a linear program as an example. For this problem, we observe that minimizing the KKT Loss alone outperforms training the network with a weighted sum of the KKT Loss and a Data Loss (the mean-squared error between the ground truth optimal solutions and the network's output). Moreover, minimizing only the Data Loss yields inferior results compared to those obtained by minimizing the KKT Loss. While the approach is promising, the obtained primal and dual solutions are not sufficiently close to the ground truth optimal solutions. In the future, we aim to develop improved models to obtain solutions closer to the ground truth and extend the approach to other problem classes.
Related papers
- A Fresh Look at Generalized Category Discovery through Non-negative Matrix Factorization [83.12938977698988]
Generalized Category Discovery (GCD) aims to classify both base and novel images using labeled base data.
Current approaches inadequately address the intrinsic optimization of the co-occurrence matrix $barA$ based on cosine similarity.
We propose a Non-Negative Generalized Category Discovery (NN-GCD) framework to address these deficiencies.
arXiv Detail & Related papers (2024-10-29T07:24:11Z) - Optimization Proxies using Limited Labeled Data and Training Time -- A Semi-Supervised Bayesian Neural Network Approach [2.943640991628177]
Constrained optimization problems arise in various engineering system operations such as inventory management electric power grids.
This work introduces a learning scheme using Bayesian Networks (BNNs) to solve constrained optimization problems under limited data and restricted model times.
We show that the proposed learning method outperforms conventional BNN and deep neural network (DNN) architectures.
arXiv Detail & Related papers (2024-10-04T02:10:20Z) - KKT-Informed Neural Network [0.0]
A neural network-based approach for solving convex optimization problems is presented.
The network estimates the optimal points given a batch of input parameters.
It is trained by penalizing violations of the Karush-Kuhn-Tucker conditions, ensuring its predictions adhere to these optimality criteria.
arXiv Detail & Related papers (2024-09-11T15:49:36Z) - Fixing the NTK: From Neural Network Linearizations to Exact Convex
Programs [63.768739279562105]
We show that for a particular choice of mask weights that do not depend on the learning targets, this kernel is equivalent to the NTK of the gated ReLU network on the training data.
A consequence of this lack of dependence on the targets is that the NTK cannot perform better than the optimal MKL kernel on the training set.
arXiv Detail & Related papers (2023-09-26T17:42:52Z) - Benign Overfitting in Linear Classifiers and Leaky ReLU Networks from
KKT Conditions for Margin Maximization [59.038366742773164]
Linears and leaky ReLU trained by gradient flow on logistic loss have an implicit bias towards satisfying the Karush-KuTucker (KKT) conditions.
In this work we establish a number of settings where the satisfaction of these conditions implies benign overfitting in linear classifiers and in two-layer leaky ReLU networks.
arXiv Detail & Related papers (2023-03-02T18:24:26Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
We propose a sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with objectives and deterministic equality constraints.
The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices.
arXiv Detail & Related papers (2022-11-29T05:52:17Z) - Fast Convex Optimization for Two-Layer ReLU Networks: Equivalent Model
Classes and Cone Decompositions [41.337814204665364]
We develop algorithms for convex optimization of two-layer neural networks with ReLU activation functions.
We show that convex gated ReLU models obtain data-dependent approximation bounds for the ReLU training problem.
arXiv Detail & Related papers (2022-02-02T23:50:53Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - DAGs with No Fears: A Closer Look at Continuous Optimization for
Learning Bayesian Networks [45.3591788771536]
We re-examine a continuous optimization framework dubbed NOTEARS for learning Bayesian networks.
We show that the Karush-Kuhn-Tucker optimality conditions for the NOTEARS cannot be satisfied except in a trivial case.
Some combinations with local search are both more accurate and more efficient than the original NOTEARS.
arXiv Detail & Related papers (2020-10-18T22:59:37Z) - Robust Optimal Transport with Applications in Generative Modeling and
Domain Adaptation [120.69747175899421]
Optimal Transport (OT) distances such as Wasserstein have been used in several areas such as GANs and domain adaptation.
We propose a computationally-efficient dual form of the robust OT optimization that is amenable to modern deep learning applications.
Our approach can train state-of-the-art GAN models on noisy datasets corrupted with outlier distributions.
arXiv Detail & Related papers (2020-10-12T17:13:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.