Axiomatization of Rényi Entropy on Quantum Phase Space
- URL: http://arxiv.org/abs/2410.15976v4
- Date: Tue, 08 Jul 2025 19:34:17 GMT
- Title: Axiomatization of Rényi Entropy on Quantum Phase Space
- Authors: Adam Brandenburger, Pierfrancesco La Mura,
- Abstract summary: Phase-space versions of quantum mechanics represent some states with negative quasi-probabilities.<n>We develop a conservative extension that applies to signed finite phase spaces and identify a single admissible entropy family.<n>Overall, our investigation provides good evidence that our axiomatically derived signed R'enyi entropy may be a useful addition to existing entropy measures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phase-space versions of quantum mechanics -- from Wigner's original distribution to modern discrete-qudit constructions -- represent some states with negative quasi-probabilities. Conventional Shannon and R\'enyi entropies become complex-valued in this setting and lose their operational meaning. Building on the axiomatic treatments of R\'enyi (1961) and Dar\'oczy (1963), we develop a conservative extension that applies to signed finite phase spaces and identify a single admissible entropy family, which we call signed R\'enyi $\alpha$-entropy (for a free parameter $\alpha > 0$). The obvious signed Shannon candidate is ruled out because it violates extensivity. We prove four results that bolster the usefulness of the new measure. (i) It serves as a witness of negative probability. (ii) For $\alpha > 1$, it is Schur-concave, delivering the intuitive property that mixing increases entropy. (iii) The same parametric family obeys a quantum H-theorem, namely, that under de-phasing dynamics entropy cannot decrease. (iv) The $2$-entropy is conserved under discrete Moyal-bracket dynamics, mirroring conservation of von Neumann entropy under unitary evolution on Hilbert space. We also comment on interpreting the R\'enyi order parameter as an inverse temperature. Overall, we believe that our investigation provides good evidence that our axiomatically derived signed R\'enyi entropy may be a useful addition to existing entropy measures employed in quantum information, foundations, and thermodynamics.
Related papers
- Universal chain rules from entropic triangle inequalities [1.8416014644193066]
We lower bound the smooth min-entropy of an $n$-partite system in terms of, roughly speaking, equally strong entropies of the individual subsystems.
We also prove an approximate version of the entropy accumulation theorem, which relaxes the conditions required on the state to bound its smooth min-entropy.
arXiv Detail & Related papers (2024-12-09T18:10:28Z) - Slow Mixing of Quantum Gibbs Samplers [47.373245682678515]
We present a quantum generalization of these tools through a generic bottleneck lemma.
This lemma focuses on quantum measures of distance, analogous to the classical Hamming distance but rooted in uniquely quantum principles.
Even with sublinear barriers, we use Feynman-Kac techniques to lift classical to quantum ones establishing tight lower bound $T_mathrmmix = 2Omega(nalpha)$.
arXiv Detail & Related papers (2024-11-06T22:51:27Z) - Experimental lower bounds on entanglement entropy without twin copy [0.0]
We calculate the Shannon entropy $S_ABX$ associated with the experimental measurements of adiabatically prepared ground states.
We show several examples for which, in good approximation, $S_AvNpropto (2S_AX-S_ABX)$ with a constant of proportionality slightly larger than one.
arXiv Detail & Related papers (2024-04-15T17:02:17Z) - Testing the Quantum of Entropy [0.0]
It is clarified when it is possible to speak about a quantum of entropy, given by the Boltzmann constant k, and about a lower entropy limit $S geq k ln 2$.
arXiv Detail & Related papers (2023-07-19T11:34:54Z) - On Entropy Growth in Perturbative Scattering [0.0]
We study the change in subsystem entropy generated by dynamical unitary evolution of a product state in a bipartite system.
Remarkably, for the case of particle scattering, the circuit diagrams corresponding to $n$-Tsallis entropy are the same as the on-shell diagrams.
arXiv Detail & Related papers (2023-04-25T18:00:01Z) - Towards Theoretical Understanding of Inverse Reinforcement Learning [45.3190496371625]
Inverse reinforcement learning (IRL) denotes a powerful family of algorithms for recovering a reward function justifying the behavior demonstrated by an expert agent.
In this paper, we make a step towards closing the theory gap of IRL in the case of finite-horizon problems with a generative model.
arXiv Detail & Related papers (2023-04-25T16:21:10Z) - Local Intrinsic Dimensional Entropy [29.519376857728325]
Most entropy measures depend on the spread of the probability distribution over the sample space $mathcalX|$.
In this work, we question the role of cardinality and distribution spread in defining entropy measures for continuous spaces.
We find that the average value of the local intrinsic dimension of a distribution, denoted as ID-Entropy, can serve as a robust entropy measure for continuous spaces.
arXiv Detail & Related papers (2023-04-05T04:36:07Z) - Fast Rates for Maximum Entropy Exploration [52.946307632704645]
We address the challenge of exploration in reinforcement learning (RL) when the agent operates in an unknown environment with sparse or no rewards.
We study the maximum entropy exploration problem two different types.
For visitation entropy, we propose a game-theoretic algorithm that has $widetildemathcalO(H3S2A/varepsilon2)$ sample complexity.
For the trajectory entropy, we propose a simple algorithm that has a sample of complexity of order $widetildemathcalO(mathrmpoly(S,
arXiv Detail & Related papers (2023-03-14T16:51:14Z) - Towards Antisymmetric Neural Ansatz Separation [48.80300074254758]
We study separations between two fundamental models of antisymmetric functions, that is, functions $f$ of the form $f(x_sigma(1), ldots, x_sigma(N))
These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems.
arXiv Detail & Related papers (2022-08-05T16:35:24Z) - Geometric relative entropies and barycentric Rényi divergences [16.385815610837167]
monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
We show that monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
arXiv Detail & Related papers (2022-07-28T17:58:59Z) - Non-Abelian eigenstate thermalization hypothesis [58.720142291102135]
The eigenstate thermalization hypothesis (ETH) explains why chaotic quantum many-body systems thermalize internally if the Hamiltonian lacks symmetries.
We adapt the ETH to noncommuting charges by positing a non-Abelian ETH and invoking the approximate microcanonical subspace introduced in quantum thermodynamics.
arXiv Detail & Related papers (2022-06-10T18:14:18Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - A new entanglement measure based dual entropy [7.95085289592294]
We define $St$-entropy entanglement based on von Neumann entropy and its complementary dual.
We prove a new type of entanglement inequality in terms of $St$-entropy entanglement for quantum entangled networks.
arXiv Detail & Related papers (2022-04-15T10:08:12Z) - The $\hbar\rightarrow 0$ Limit of the Entanglement Entropy [0.0]
Entangled quantum states share properties that do not have classical analogs.
We show that the limit of the bipartite entanglement entropy coincides with the Shannon entropy of $N$ bits.
arXiv Detail & Related papers (2021-12-13T17:57:10Z) - Sublinear quantum algorithms for estimating von Neumann entropy [18.30551855632791]
We study the problem of obtaining estimates to within a multiplicative factor $gamma>1$ of the Shannon entropy of probability distributions and the von Neumann entropy of mixed quantum states.
We work with the quantum purified query access model, which can handle both classical probability distributions and mixed quantum states, and is the most general input model considered in the literature.
arXiv Detail & Related papers (2021-11-22T12:00:45Z) - Tight Exponential Analysis for Smoothing the Max-Relative Entropy and
for Quantum Privacy Amplification [56.61325554836984]
The max-relative entropy together with its smoothed version is a basic tool in quantum information theory.
We derive the exact exponent for the decay of the small modification of the quantum state in smoothing the max-relative entropy based on purified distance.
arXiv Detail & Related papers (2021-11-01T16:35:41Z) - Modular Nuclearity and Entanglement Entropy [0.0]
In this work we show that the Longo's canonical entanglement entropy is finite in any local QFT verifying a modular $p$-nuclearity condition.
As application, in $1+1$-dimensional integrable models with factorizing S-matrices we study the behavior of the canonical entanglement entropy as the distance between two causally disjoint wedges diverges.
arXiv Detail & Related papers (2021-08-20T09:01:59Z) - Entanglement dynamics in Rule 54: Exact results and quasiparticle
picture [0.0]
We study the entanglement dynamics generated by quantum quenches in the quantum cellular automaton Rule $54$.
While in the case of von Neumann entropy we recover exactly the predictions of the quasiparticle picture, we find no physically meaningful quasiparticle description for other R'enyi entropies.
arXiv Detail & Related papers (2021-04-09T17:51:09Z) - Action Redundancy in Reinforcement Learning [54.291331971813364]
We show that transition entropy can be described by two terms; namely, model-dependent transition entropy and action redundancy.
Our results suggest that action redundancy is a fundamental problem in reinforcement learning.
arXiv Detail & Related papers (2021-02-22T19:47:26Z) - Entropy and reversible catalysis [0.0]
I show that non-decreasing entropy provides a necessary and sufficient condition to convert the state of a physical system into a different state.
I show how they can be used to obtain a quantitative single-shot characterization of Gibbs states in quantum statistical mechanics.
arXiv Detail & Related papers (2020-12-10T10:42:44Z) - Entropy and relative entropy from information-theoretic principles [24.74754293747645]
We find that every relative entropy must lie between the R'enyi divergences of order $0$ and $infty$.
Our main result is a one-to-one correspondence between entropies and relative entropies.
arXiv Detail & Related papers (2020-06-19T14:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.