Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach
- URL: http://arxiv.org/abs/2212.01565v1
- Date: Sat, 3 Dec 2022 07:52:48 GMT
- Title: Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach
- Authors: Haoxuan Wang and Junchi Yan
- Abstract summary: We reformulate the recognition probabilities through included angles without re-balancing the classifier weights.
Inspired by the performance improvement of the predictive form reformulation, we explore the different properties of this angular prediction.
Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT.
- Score: 90.77858044524544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks still struggle on long-tailed image datasets, and one of
the reasons is that the imbalance of training data across categories leads to
the imbalance of trained model parameters. Motivated by the empirical findings
that trained classifiers yield larger weight norms in head classes, we propose
to reformulate the recognition probabilities through included angles without
re-balancing the classifier weights. Specifically, we calculate the angles
between the data feature and the class-wise classifier weights to obtain
angle-based prediction results. Inspired by the performance improvement of the
predictive form reformulation and the outstanding performance of the widely
used two-stage learning framework, we explore the different properties of this
angular prediction and propose novel modules to improve the performance of
different components in the framework. Our method is able to obtain the best
performance among peer methods without pretraining on CIFAR10/100-LT and
ImageNet-LT. Source code will be made publicly available.
Related papers
- Granularity Matters in Long-Tail Learning [62.30734737735273]
We offer a novel perspective on long-tail learning, inspired by an observation: datasets with finer granularity tend to be less affected by data imbalance.
We introduce open-set auxiliary classes that are visually similar to existing ones, aiming to enhance representation learning for both head and tail classes.
To prevent the overwhelming presence of auxiliary classes from disrupting training, we introduce a neighbor-silencing loss.
arXiv Detail & Related papers (2024-10-21T13:06:21Z) - BaFTA: Backprop-Free Test-Time Adaptation For Zero-Shot Vision-Language Models [20.88680592729709]
We propose a novel backpropagation-free algorithm BaFTA for test-time adaptation of vision-language models.
BaFTA directly estimates class centroids using online clustering within a projected embedding space.
We demonstrate that BaFTA consistently outperforms state-of-the-art test-time adaptation methods in both effectiveness and efficiency.
arXiv Detail & Related papers (2024-06-17T08:16:24Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - Decoupled Training for Long-Tailed Classification With Stochastic
Representations [15.990318581975435]
Decoupling representation learning and learning has been shown to be effective in classification with long-tailed data.
We first apply Weight Averaging (SWA), an optimization technique for improving generalization of deep neural networks, to obtain better generalizing feature extractors for long-tailed classification.
We then propose a novel classifier re-training algorithm based on perturbed representation obtained from the SWA-Gaussian, a Gaussian SWA, and a self-distillation strategy.
arXiv Detail & Related papers (2023-04-19T05:35:09Z) - Constructing Balance from Imbalance for Long-tailed Image Recognition [50.6210415377178]
The imbalance between majority (head) classes and minority (tail) classes severely skews the data-driven deep neural networks.
Previous methods tackle with data imbalance from the viewpoints of data distribution, feature space, and model design.
We propose a concise paradigm by progressively adjusting label space and dividing the head classes and tail classes.
Our proposed model also provides a feature evaluation method and paves the way for long-tailed feature learning.
arXiv Detail & Related papers (2022-08-04T10:22:24Z) - You Only Need End-to-End Training for Long-Tailed Recognition [8.789819609485225]
Cross-entropy loss tends to produce highly correlated features on imbalanced data.
We propose two novel modules, Block-based Relatively Balanced Batch Sampler (B3RS) and Batch Embedded Training (BET)
Experimental results on the long-tailed classification benchmarks, CIFAR-LT and ImageNet-LT, demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2021-12-11T11:44:09Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - More Is More -- Narrowing the Generalization Gap by Adding
Classification Heads [8.883733362171032]
We introduce an architecture enhancement for existing neural network models based on input transformations, termed 'TransNet'
Our model can be employed during training time only and then pruned for prediction, resulting in an equivalent architecture to the base model.
arXiv Detail & Related papers (2021-02-09T16:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.