TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis
- URL: http://arxiv.org/abs/2410.16032v1
- Date: Mon, 21 Oct 2024 14:06:53 GMT
- Title: TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis
- Authors: Shiyu Wang, Jiawei Li, Xiaoming Shi, Zhou Ye, Baichuan Mo, Wenze Lin, Shengtong Ju, Zhixuan Chu, Ming Jin,
- Abstract summary: Time series analysis plays a critical role in numerous applications, supporting tasks such as forecasting, classification, anomaly detection, and imputation.
In this work, we present the time series pattern machine (TSPM), a model designed to excel in a broad range of time series tasks through powerful representation and pattern extraction capabilities.
- Score: 17.09401448377127
- License:
- Abstract: Time series analysis plays a critical role in numerous applications, supporting tasks such as forecasting, classification, anomaly detection, and imputation. In this work, we present the time series pattern machine (TSPM), a model designed to excel in a broad range of time series tasks through powerful representation and pattern extraction capabilities. Traditional time series models often struggle to capture universal patterns, limiting their effectiveness across diverse tasks. To address this, we define multiple scales in the time domain and various resolutions in the frequency domain, employing various mixing strategies to extract intricate, task-adaptive time series patterns. Specifically, we introduce a general-purpose TSPM that processes multi-scale time series using (1) multi-resolution time imaging (MRTI), (2) time image decomposition (TID), (3) multi-scale mixing (MCM), and (4) multi-resolution mixing (MRM) to extract comprehensive temporal patterns. MRTI transforms multi-scale time series into multi-resolution time images, capturing patterns across both temporal and frequency domains. TID leverages dual-axis attention to extract seasonal and trend patterns, while MCM hierarchically aggregates these patterns across scales. MRM adaptively integrates all representations across resolutions. This method achieves state-of-the-art performance across 8 time series analytical tasks, consistently surpassing both general-purpose and task-specific models. Our work marks a promising step toward the next generation of TSPMs, paving the way for further advancements in time series analysis.
Related papers
- Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
This paper introduces Moirai-MoE, using a single input/output projection layer while delegating the modeling of diverse time series patterns to the sparse mixture of experts.
Extensive experiments on 39 datasets demonstrate the superiority of Moirai-MoE over existing foundation models in both in-distribution and zero-shot scenarios.
arXiv Detail & Related papers (2024-10-14T13:01:11Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
Time series data is of great significance in real-world scenarios.
Recent years have witnessed remarkable breakthroughs in the time series community.
We release Time Series Library (TSLib) as a fair benchmark of deep time series models for diverse analysis tasks.
arXiv Detail & Related papers (2024-07-18T08:31:55Z) - Two-Stage Aggregation with Dynamic Local Attention for Irregular Time Series [14.883195365310705]
We introduce TADA, a Two-stage aggregation process with Dynamic local Attention to harmonize time-wise and feature-wise irregularities in time series.
TADA outperforms state-of-the-art methods on three real-world datasets.
arXiv Detail & Related papers (2023-11-13T20:54:52Z) - A Multi-Scale Decomposition MLP-Mixer for Time Series Analysis [14.40202378972828]
We propose MSD-Mixer, a Multi-Scale Decomposition-Mixer, which learns to explicitly decompose and represent the input time series in its different layers.
We demonstrate that MSD-Mixer consistently and significantly outperforms other state-of-the-art algorithms with better efficiency.
arXiv Detail & Related papers (2023-10-18T13:39:07Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z) - Feature Programming for Multivariate Time Series Prediction [7.0220697993232]
We introduce the concept of programmable feature engineering for time series modeling.
We propose a feature programming framework that generates large amounts of predictive features for noisy time series.
arXiv Detail & Related papers (2023-06-09T20:46:55Z) - SimMTM: A Simple Pre-Training Framework for Masked Time-Series Modeling [82.69579113377192]
SimMTM is a simple pre-training framework for Masked Time-series Modeling.
SimMTM recovers masked time points by the weighted aggregation of multiple neighbors outside the manifold.
SimMTM achieves state-of-the-art fine-tuning performance compared to the most advanced time series pre-training methods.
arXiv Detail & Related papers (2023-02-02T04:12:29Z) - Multi-Task Dynamical Systems [5.881614676989161]
Time series datasets are often composed of a variety of sequences from the same domain, but from different entities.
This paper describes the multi-task dynamical system (MTDS); a general methodology for extending multi-task learning (MTL) to time series models.
We apply the MTDS to motion-capture data of people walking in various styles using a multi-task recurrent neural network (RNN), and to patient drug-response data using a multi-task pharmacodynamic model.
arXiv Detail & Related papers (2022-10-08T13:37:55Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
Time series analysis is of immense importance in applications, such as weather forecasting, anomaly detection, and action recognition.
Previous methods attempt to accomplish this directly from the 1D time series.
We ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations.
arXiv Detail & Related papers (2022-10-05T12:19:51Z) - An Unsupervised Short- and Long-Term Mask Representation for
Multivariate Time Series Anomaly Detection [2.387411589813086]
This paper proposes an anomaly detection method based on unsupervised Short- and Long-term Mask Representation learning (SLMR)
Experiments show that the performance of our method outperforms other state-of-the-art models on three real-world datasets.
arXiv Detail & Related papers (2022-08-19T09:34:11Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.