Near-Optimal Algorithm for Non-Stationary Kernelized Bandits
- URL: http://arxiv.org/abs/2410.16052v1
- Date: Mon, 21 Oct 2024 14:28:26 GMT
- Title: Near-Optimal Algorithm for Non-Stationary Kernelized Bandits
- Authors: Shogo Iwazaki, Shion Takeno,
- Abstract summary: We study a non-stationary kernelized bandit (KB) problem, also called time-varying Bayesian optimization.
We show the first algorithm-independent regret lower bound for non-stationary KB with squared exponential and Mat'ern kernels.
We propose a novel near-optimal algorithm called restarting phased elimination with random permutation.
- Score: 6.379833644595456
- License:
- Abstract: This paper studies a non-stationary kernelized bandit (KB) problem, also called time-varying Bayesian optimization, where one seeks to minimize the regret under an unknown reward function that varies over time. In particular, we focus on a near-optimal algorithm whose regret upper bound matches the regret lower bound. For this goal, we show the first algorithm-independent regret lower bound for non-stationary KB with squared exponential and Mat\'ern kernels, which reveals that an existing optimization-based KB algorithm with slight modification is near-optimal. However, this existing algorithm suffers from feasibility issues due to its huge computational cost. Therefore, we propose a novel near-optimal algorithm called restarting phased elimination with random permutation (R-PERP), which bypasses the huge computational cost. A technical key point is the simple permutation procedures of query candidates, which enable us to derive a novel tighter confidence bound tailored to the non-stationary problems.
Related papers
- Regret-Optimal Model-Free Reinforcement Learning for Discounted MDPs
with Short Burn-In Time [13.545356254920584]
We introduce a model-free algorithm that employs variance reduction and a novel technique that switches the execution policy in a slow-yet-adaptive manner.
This is the first regret-optimal model-free algorithm in the discounted setting, with the additional benefit of a low burn-in time.
arXiv Detail & Related papers (2023-05-24T20:22:43Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - An Optimization-based Algorithm for Non-stationary Kernel Bandits
without Prior Knowledge [23.890686553141798]
We propose an algorithm for non-stationary kernel bandits that does not require prior knowledge of the degree of non-stationarity.
Our algorithm enjoys a tighter dynamic regret bound than previous work on the non-stationary kernel bandit setting.
arXiv Detail & Related papers (2022-05-29T21:32:53Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
The expected improvement (EI) algorithm is one of the most popular strategies for optimization under uncertainty.
We propose a variant of EI with a standard incumbent defined via the GP predictive mean.
We show that our algorithm converges, and achieves a cumulative regret bound of $mathcal O(gamma_TsqrtT)$.
arXiv Detail & Related papers (2022-03-15T13:17:53Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Lenient Regret and Good-Action Identification in Gaussian Process
Bandits [43.03669155559218]
We study the problem of Gaussian process (GP) bandits under relaxed optimization criteria stating that any function value above a certain threshold is "good enough"
On the practical side, we consider the problem of finding a single "good action" according to a known pre-specified threshold, and introduce several good-action identification algorithms that exploit knowledge of the threshold.
arXiv Detail & Related papers (2021-02-11T01:16:58Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Corruption-Tolerant Gaussian Process Bandit Optimization [130.60115798580136]
We consider the problem of optimizing an unknown (typically non-producing) function with a bounded norm.
We introduce an algorithm based on Fast-Slow GP-UCB based on "fast but non-robust" and "slow"
We argue that certain dependencies cannot be required depending on the corruption level.
arXiv Detail & Related papers (2020-03-04T09:46:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.