論文の概要: Label Filling via Mixed Supervision for Medical Image Segmentation from Noisy Annotations
- arxiv url: http://arxiv.org/abs/2410.16057v1
- Date: Mon, 21 Oct 2024 14:36:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:18:20.551252
- Title: Label Filling via Mixed Supervision for Medical Image Segmentation from Noisy Annotations
- Title(参考訳): ノイズアノテーションからの医用画像分割のための混合スーパービジョンによるラベルフィリング
- Authors: Ming Li, Wei Shen, Qingli Li, Yan Wang,
- Abstract要約: 本稿では,LF-Net と呼ばれるシンプルで効果的なラベルフィリングフレームワークを提案する。
トレーニング中にノイズの多いアノテーションのみを付与した、基礎的なセグメンテーションラベルを予測する。
5つのデータセットの結果から、LF-Netは最先端の手法と比較して、すべてのデータセットのセグメンテーション精度を向上することが示された。
- 参考スコア(独自算出の注目度): 22.910649758574852
- License:
- Abstract: The success of medical image segmentation usually requires a large number of high-quality labels. But since the labeling process is usually affected by the raters' varying skill levels and characteristics, the estimated masks provided by different raters usually suffer from high inter-rater variability. In this paper, we propose a simple yet effective Label Filling framework, termed as LF-Net, predicting the groundtruth segmentation label given only noisy annotations during training. The fundamental idea of label filling is to supervise the segmentation model by a subset of pixels with trustworthy labels, meanwhile filling labels of other pixels by mixed supervision. More concretely, we propose a qualified majority voting strategy, i.e., a threshold voting scheme is designed to model agreement among raters and the majority-voted labels of the selected subset of pixels are regarded as supervision. To fill labels of other pixels, two types of mixed auxiliary supervision are proposed: a soft label learned from intrinsic structures of noisy annotations, and raters' characteristics labels which propagate individual rater's characteristics information. LF-Net has two main advantages. 1) Training with trustworthy pixels incorporates training with confident supervision, guiding the direction of groundtruth label learning. 2) Two types of mixed supervision prevent over-fitting issues when the network is supervised by a subset of pixels, and guarantee high fidelity with the true label. Results on five datasets of diverse imaging modalities show that our LF-Net boosts segmentation accuracy in all datasets compared with state-of-the-art methods, with even a 7% improvement in DSC for MS lesion segmentation.
- Abstract(参考訳): 医療画像セグメンテーションの成功は通常、多くの高品質なラベルを必要とする。
しかし、ラベリングプロセスは通常、ラベリングの様々なスキルレベルと特性に影響されるため、異なるラベリングによって提供される推定マスクは、通常、高いラベリング変動に悩まされる。
本稿では, LF-Net と呼ばれる単純で効果的なラベルフィリングフレームワークを提案する。
ラベルフィリングの基本的な考え方は、信頼できるラベルを持つピクセルのサブセットによるセグメンテーションモデルを監督することであり、一方で、混合監督によって他のピクセルのラベルを埋めることである。
より具体的には、レーダ間の合意をモデル化するためにしきい値投票方式を設計し、選択された画素サブセットの多数投票ラベルを監督する。
他の画素のラベルを埋めるために,ノイズアノテーションの内在的構造から学習したソフトラベルと,レーダの特性情報を伝達するレーダの特性ラベルの2種類が提案されている。
LF-Netには2つの大きな利点がある。
1)信頼度の高い画素を用いた訓練は,信頼度の高い監督による訓練を取り入れ,基礎的ラベル学習の方向性を導いた。
2)2種類の混合監視は,ネットワークが画素のサブセットによって監督されている場合に過度に適合する問題を防止し,真のラベルとの高忠実性を保証する。
様々な画像モダリティの5つのデータセットの結果、LF-Netは最先端の手法と比較して全データセットのセグメンテーション精度を向上し、MS病変セグメンテーションのDSCも7%改善した。
関連論文リスト
- Superpixelwise Low-rank Approximation based Partial Label Learning for Hyperspectral Image Classification [19.535446654147126]
キャプチャーされたハイパースペクトル画像(HSI)シーンの十分な事前知識は、専門家や自動ラベルシステムに誤ったラベルや曖昧なラベルを提供する可能性がある。
本稿では,新しい超画素単位の低ランク近似(LRA)に基づく部分ラベル学習法,SLAPを提案する。
論文 参考訳(メタデータ) (2024-05-27T12:26:49Z) - Distilling Self-Supervised Vision Transformers for Weakly-Supervised
Few-Shot Classification & Segmentation [58.03255076119459]
視覚変換器(ViT)を利用した弱教師付き小ショット画像分類とセグメンテーションの課題に対処する。
提案手法は,自己監督型ViTからトークン表現を抽出し,その相関関係を利用して分類とセグメンテーションの予測を行う。
Pascal-5iとCOCO-20iの実験は、様々な監視設定において大きなパフォーマンス向上を示した。
論文 参考訳(メタデータ) (2023-07-07T06:16:43Z) - Dual-Perspective Semantic-Aware Representation Blending for Multi-Label
Image Recognition with Partial Labels [70.36722026729859]
本稿では,多粒度カテゴリ固有の意味表現を異なる画像にブレンドした,二重パースペクティブな意味認識表現ブレンディング(DSRB)を提案する。
提案したDSは、すべての比率ラベル設定において、最先端のアルゴリズムを一貫して上回っている。
論文 参考訳(メタデータ) (2022-05-26T00:33:44Z) - Learning Self-Supervised Low-Rank Network for Single-Stage Weakly and
Semi-Supervised Semantic Segmentation [119.009033745244]
本稿では,単一段階弱教師付きセマンティックセマンティックセマンティックセマンティクス(WSSS)と半教師付きセマンティクスセマンティクスセマンティクス(SSSS)のための自己教師付き低ランクネットワーク(SLRNet)を提案する。
SLRNetは、画像の異なるビューから複数の注意深いLR表現を同時に予測し、正確な擬似ラベルを学習する。
Pascal VOC 2012、COCO、L2IDデータセットの実験では、SLRNetは最先端のWSSSメソッドとSSSSメソッドの両方で、さまざまな設定で優れています。
論文 参考訳(メタデータ) (2022-03-19T09:19:55Z) - Semantic-Aware Representation Blending for Multi-Label Image Recognition
with Partial Labels [86.17081952197788]
そこで我々は,未知のラベルを補うために,異なる画像にカテゴリ固有の表現をブレンドして,既知のラベルの情報を伝達することを提案する。
MS-COCO、Visual Genome、Pascal VOC 2007データセットの実験は、提案されたSARBフレームワークが、現在の主要な競合相手よりも優れたパフォーマンスを得ることを示している。
論文 参考訳(メタデータ) (2022-03-04T07:56:16Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Learning from Pixel-Level Label Noise: A New Perspective for
Semi-Supervised Semantic Segmentation [12.937770890847819]
ピクセルレベルのノイズラベルに対処するためのグラフベースのラベルノイズ検出および補正フレームワークを提案する。
特に,クラスアクティベーションマップ(cam)による弱い監督から生成した画素レベルのノイズラベルに対して,強い監督を施したクリーンセグメンテーションモデルを訓練する。
最後に,超画素ベースのグラフを用いて,画像中の画素間の空間的隣接性と意味的類似性の関係を表現する。
論文 参考訳(メタデータ) (2021-03-26T03:23:21Z) - SSKD: Self-Supervised Knowledge Distillation for Cross Domain Adaptive
Person Re-Identification [25.96221714337815]
ドメイン適応型人物再識別(re-ID)は、ソースドメインとターゲットドメインの間に大きな違いがあるため、難しい課題である。
既存の手法は主にクラスタリングアルゴリズムによって未ラベルのターゲット画像の擬似ラベルを生成する。
本稿では,識別学習とソフトラベル学習の2つのモジュールを含む自己監督的知識蒸留(SSKD)手法を提案する。
論文 参考訳(メタデータ) (2020-09-13T10:12:02Z) - Unsupervised Person Re-identification via Multi-label Classification [55.65870468861157]
本稿では,教師なしのReIDを多ラベル分類タスクとして定式化し,段階的に真のラベルを求める。
提案手法は,まず,各人物画像に単一クラスラベルを割り当てることから始まり,ラベル予測のために更新されたReIDモデルを活用することで,多ラベル分類へと進化する。
マルチラベル分類におけるReIDモデルのトレーニング効率を高めるために,メモリベースマルチラベル分類損失(MMCL)を提案する。
論文 参考訳(メタデータ) (2020-04-20T12:13:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。