Superpixelwise Low-rank Approximation based Partial Label Learning for Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2405.17110v1
- Date: Mon, 27 May 2024 12:26:49 GMT
- Title: Superpixelwise Low-rank Approximation based Partial Label Learning for Hyperspectral Image Classification
- Authors: Shujun Yang, Yu Zhang, Yao Ding, Danfeng Hong,
- Abstract summary: Insufficient prior knowledge of a captured hyperspectral image (HSI) scene may lead the experts or the automatic labeling systems to offer incorrect labels or ambiguous labels.
We propose a novel superpixelwise low-rank approximation (LRA)-based partial label learning method, namely SLAP.
- Score: 19.535446654147126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Insufficient prior knowledge of a captured hyperspectral image (HSI) scene may lead the experts or the automatic labeling systems to offer incorrect labels or ambiguous labels (i.e., assigning each training sample to a group of candidate labels, among which only one of them is valid; this is also known as partial label learning) during the labeling process. Accordingly, how to learn from such data with ambiguous labels is a problem of great practical importance. In this paper, we propose a novel superpixelwise low-rank approximation (LRA)-based partial label learning method, namely SLAP, which is the first to take into account partial label learning in HSI classification. SLAP is mainly composed of two phases: disambiguating the training labels and acquiring the predictive model. Specifically, in the first phase, we propose a superpixelwise LRA-based model, preparing the affinity graph for the subsequent label propagation process while extracting the discriminative representation to enhance the following classification task of the second phase. Then to disambiguate the training labels, label propagation propagates the labeling information via the affinity graph of training pixels. In the second phase, we take advantage of the resulting disambiguated training labels and the discriminative representations to enhance the classification performance. The extensive experiments validate the advantage of the proposed SLAP method over state-of-the-art methods.
Related papers
- Label Filling via Mixed Supervision for Medical Image Segmentation from Noisy Annotations [22.910649758574852]
We propose a simple yet effective Label Filling framework, termed as LF-Net.
It predicts the groundtruth segmentation label given only noisy annotations during training.
Results on five datasets show that our LF-Net boosts segmentation accuracy in all datasets compared with state-of-the-art methods.
arXiv Detail & Related papers (2024-10-21T14:36:36Z) - VLM-CPL: Consensus Pseudo Labels from Vision-Language Models for Human Annotation-Free Pathological Image Classification [23.08368823707528]
We present a novel human annotation-free method for pathology image classification by leveraging pre-trained Vision-Language Models (VLMs)
We introduce VLM-CPL, a novel approach based on consensus pseudo labels that integrates two noisy label filtering techniques with a semi-supervised learning strategy.
Experimental results showed that our method obtained an accuracy of 87.1% and 95.1% on the HPH and LC25K datasets, respectively.
arXiv Detail & Related papers (2024-03-23T13:24:30Z) - Pseudo-labelling meets Label Smoothing for Noisy Partial Label Learning [8.387189407144403]
Partial label learning (PLL) is a weakly-supervised learning paradigm where each training instance is paired with a set of candidate labels (partial label)
NPLL relaxes this constraint by allowing some partial labels to not contain the true label, enhancing the practicality of the problem.
We present a minimalistic framework that initially assigns pseudo-labels to images by exploiting the noisy partial labels through a weighted nearest neighbour algorithm.
arXiv Detail & Related papers (2024-02-07T13:32:47Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Contrastive Label Enhancement [13.628665406039609]
We propose Contrastive Label Enhancement (ConLE) to generate high-level features by contrastive learning strategy.
We leverage the obtained high-level features to gain label distributions through a welldesigned training strategy.
arXiv Detail & Related papers (2023-05-16T14:53:07Z) - Ambiguity-Resistant Semi-Supervised Learning for Dense Object Detection [98.66771688028426]
We propose a Ambiguity-Resistant Semi-supervised Learning (ARSL) for one-stage detectors.
Joint-Confidence Estimation (JCE) is proposed to quantifies the classification and localization quality of pseudo labels.
ARSL effectively mitigates the ambiguities and achieves state-of-the-art SSOD performance on MS COCO and PASCAL VOC.
arXiv Detail & Related papers (2023-03-27T07:46:58Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels.
Two-stage self-training methods have achieved significant improvements by self-generating pseudo labels.
We propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training.
arXiv Detail & Related papers (2022-12-08T05:53:53Z) - Acknowledging the Unknown for Multi-label Learning with Single Positive
Labels [65.5889334964149]
Traditionally, all unannotated labels are assumed as negative labels in single positive multi-label learning (SPML)
We propose entropy-maximization (EM) loss to maximize the entropy of predicted probabilities for all unannotated labels.
Considering the positive-negative label imbalance of unannotated labels, we propose asymmetric pseudo-labeling (APL) with asymmetric-tolerance strategies and a self-paced procedure to provide more precise supervision.
arXiv Detail & Related papers (2022-03-30T11:43:59Z) - Semantic-Aware Representation Blending for Multi-Label Image Recognition
with Partial Labels [86.17081952197788]
We propose to blend category-specific representation across different images to transfer information of known labels to complement unknown labels.
Experiments on the MS-COCO, Visual Genome, Pascal VOC 2007 datasets show that the proposed SARB framework obtains superior performance over current leading competitors.
arXiv Detail & Related papers (2022-03-04T07:56:16Z) - CLS: Cross Labeling Supervision for Semi-Supervised Learning [9.929229055862491]
Cross Labeling Supervision ( CLS) is a framework that generalizes the typical pseudo-labeling process.
CLS allows the creation of both pseudo and complementary labels to support both positive and negative learning.
arXiv Detail & Related papers (2022-02-17T08:09:40Z) - Unsupervised Person Re-identification via Multi-label Classification [55.65870468861157]
This paper formulates unsupervised person ReID as a multi-label classification task to progressively seek true labels.
Our method starts by assigning each person image with a single-class label, then evolves to multi-label classification by leveraging the updated ReID model for label prediction.
To boost the ReID model training efficiency in multi-label classification, we propose the memory-based multi-label classification loss (MMCL)
arXiv Detail & Related papers (2020-04-20T12:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.