CartesianMoE: Boosting Knowledge Sharing among Experts via Cartesian Product Routing in Mixture-of-Experts
- URL: http://arxiv.org/abs/2410.16077v2
- Date: Tue, 22 Oct 2024 09:37:45 GMT
- Title: CartesianMoE: Boosting Knowledge Sharing among Experts via Cartesian Product Routing in Mixture-of-Experts
- Authors: Zhenpeng Su, Xing Wu, Zijia Lin, Yizhe Xiong, Minxuan Lv, Guangyuan Ma, Hui Chen, Songlin Hu, Guiguang Ding,
- Abstract summary: Mixture-of-Experts (MoE) models address that by allowing the model size to grow without substantially raising training or inference costs.
MoE models face challenges regarding knowledge sharing among experts, making their performance somehow sensitive to routing accuracy.
In this paper, we propose CartesianMoE, which implements more effective knowledge sharing among experts in more like a multiplication'' manner.
- Score: 36.385301311200905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLM) have been attracting much attention from the community recently, due to their remarkable performance in all kinds of downstream tasks. According to the well-known scaling law, scaling up a dense LLM enhances its capabilities, but also significantly increases the computational complexity. Mixture-of-Experts (MoE) models address that by allowing the model size to grow without substantially raising training or inference costs. Yet MoE models face challenges regarding knowledge sharing among experts, making their performance somehow sensitive to routing accuracy. To tackle that, previous works introduced shared experts and combined their outputs with those of the top $K$ routed experts in an ``addition'' manner. In this paper, inspired by collective matrix factorization to learn shared knowledge among data, we propose CartesianMoE, which implements more effective knowledge sharing among experts in more like a ``multiplication'' manner. Extensive experimental results indicate that CartesianMoE outperforms previous MoE models for building LLMs, in terms of both perplexity and downstream task performance. And we also find that CartesianMoE achieves better expert routing robustness.
Related papers
- Unveiling Hidden Collaboration within Mixture-of-Experts in Large Language Models [5.211806751260724]
We propose a hierarchical sparse dictionary learning (HSDL) method that uncovers the collaboration patterns among experts.
We also introduce the Contribution-Aware Expert Pruning (CAEP) algorithm, which effectively prunes low-contribution experts.
arXiv Detail & Related papers (2025-04-16T04:06:15Z) - Your Mixture-of-Experts LLM Is Secretly an Embedding Model For Free [21.59456761618456]
Large language models (LLMs) excel on generation tasks, their decoder-only architecture often limits their potential as embedding models if no further representation finetuning is applied.
Our study shows that the expert routers in MoE LLMs can serve as an off-the-shelf embedding model with promising performance on a diverse class of embedding-focused tasks.
arXiv Detail & Related papers (2024-10-14T17:59:44Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
We propose a method of grouping and pruning similar experts to improve the model's parameter efficiency.
We validate the effectiveness of our method by pruning three state-of-the-art MoE architectures.
The evaluation shows that our method outperforms other model pruning methods on a range of natural language tasks.
arXiv Detail & Related papers (2024-07-12T17:25:02Z) - Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models [90.14693869269519]
MoE LLMs can achieve higher performance with fewer parameters, but it is still hard to deploy them due to their immense parameter sizes.
This paper mainly aims to enhance the deployment efficiency of MoE LLMs by introducing plug-and-play expert-level sparsification techniques.
arXiv Detail & Related papers (2024-02-22T18:56:07Z) - HyperMoE: Towards Better Mixture of Experts via Transferring Among Experts [25.504602853436047]
Mixture of Experts (MoE) for language models has been proven effective in augmenting the capacity of models by dynamically routing each input token to a specific subset of experts for processing.
We propose HyperMoE, a novel MoE framework built upon Hypernetworks.
This framework integrates the computational processes of MoE with the concept of knowledge transferring in multi-task learning.
arXiv Detail & Related papers (2024-02-20T02:09:55Z) - Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts [74.40198929049959]
Large multi-modal models (LMMs) exhibit remarkable performance across numerous tasks.
generalist LMMs often suffer from performance degradation when tuned over a large collection of tasks.
We propose Omni-SMoLA, an architecture that uses the Soft MoE approach to mix many multimodal low rank experts.
arXiv Detail & Related papers (2023-12-01T23:04:27Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE) has received great interest due to its promising scaling capability with affordable computational overhead.
MoE converts dense layers into sparse experts, and utilizes a gated routing network to make experts conditionally activated.
However, as the number of experts grows, MoE with outrageous parameters suffers from overfitting and sparse data allocation.
arXiv Detail & Related papers (2022-07-19T06:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.