Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability
- URL: http://arxiv.org/abs/2310.14286v2
- Date: Sat, 15 Jun 2024 08:29:03 GMT
- Title: Improved High-Probability Bounds for the Temporal Difference Learning Algorithm via Exponential Stability
- Authors: Sergey Samsonov, Daniil Tiapkin, Alexey Naumov, Eric Moulines,
- Abstract summary: We show that a simple algorithm with a universal and instance-independent step size is sufficient to obtain near-optimal variance and bias terms.
Our proof technique is based on refined error bounds for linear approximation together with the novel stability result for the product of random matrices.
- Score: 17.771354881467435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we consider the problem of obtaining sharp bounds for the performance of temporal difference (TD) methods with linear function approximation for policy evaluation in discounted Markov decision processes. We show that a simple algorithm with a universal and instance-independent step size together with Polyak-Ruppert tail averaging is sufficient to obtain near-optimal variance and bias terms. We also provide the respective sample complexity bounds. Our proof technique is based on refined error bounds for linear stochastic approximation together with the novel stability result for the product of random matrices that arise from the TD-type recurrence.
Related papers
- Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Finite Time Analysis of Temporal Difference Learning for Mean-Variance in a Discounted MDP [1.0923877073891446]
We consider the problem of policy evaluation for variance in a discounted reward Markov decision process.
For this problem, a temporal difference (TD) type learning algorithm with linear function approximation (LFA) exists in the literature.
We derive finite sample bounds that hold (i) in the mean-squared sense; and (ii) with high probability, when tail iterate averaging is employed.
arXiv Detail & Related papers (2024-06-12T05:49:53Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
Proximal point methods have attracted considerable interest owing to their numerical stability and robustness against imperfect tuning.
This paper presents a comprehensive analysis of a broad range of variations of the proximal point method (SPPM)
arXiv Detail & Related papers (2024-05-24T21:09:19Z) - High-probability sample complexities for policy evaluation with linear function approximation [88.87036653258977]
We investigate the sample complexities required to guarantee a predefined estimation error of the best linear coefficients for two widely-used policy evaluation algorithms.
We establish the first sample complexity bound with high-probability convergence guarantee that attains the optimal dependence on the tolerance level.
arXiv Detail & Related papers (2023-05-30T12:58:39Z) - The Stochastic Proximal Distance Algorithm [5.3315823983402755]
We propose and analyze a class of iterative optimization methods that recover a desired constrained estimation problem as a penalty parameter.
We extend recent theoretical devices to establish finite error bounds and a complete characterization of convergence rates.
We validate our analysis via a thorough empirical study, also showing that unsurprisingly, the proposed method outpaces batch versions on popular learning tasks.
arXiv Detail & Related papers (2022-10-21T22:07:28Z) - Accelerated and instance-optimal policy evaluation with linear function
approximation [17.995515643150657]
Existing algorithms fail to match at least one of these lower bounds.
We develop an accelerated, variance-reduced fast temporal difference algorithm that simultaneously matches both lower bounds and attains a strong notion of instance-optimality.
arXiv Detail & Related papers (2021-12-24T17:21:04Z) - Uniform-PAC Bounds for Reinforcement Learning with Linear Function
Approximation [92.3161051419884]
We study reinforcement learning with linear function approximation.
Existing algorithms only have high-probability regret and/or Probably Approximately Correct (PAC) sample complexity guarantees.
We propose a new algorithm called FLUTE, which enjoys uniform-PAC convergence to the optimal policy with high probability.
arXiv Detail & Related papers (2021-06-22T08:48:56Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis [102.29671176698373]
We address the problem of policy evaluation in discounted decision processes, and provide Markov-dependent guarantees on the $ell_infty$error under a generative model.
We establish both and non-asymptotic versions of local minimax lower bounds for policy evaluation, thereby providing an instance-dependent baseline by which to compare algorithms.
arXiv Detail & Related papers (2020-03-16T17:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.