Griffon-G: Bridging Vision-Language and Vision-Centric Tasks via Large Multimodal Models
- URL: http://arxiv.org/abs/2410.16163v1
- Date: Mon, 21 Oct 2024 16:30:29 GMT
- Title: Griffon-G: Bridging Vision-Language and Vision-Centric Tasks via Large Multimodal Models
- Authors: Yufei Zhan, Hongyin Zhao, Yousong Zhu, Fan Yang, Ming Tang, Jinqiao Wang,
- Abstract summary: We introduce CCMD-8M, which overcomes the data barriers of unifying vision-centric and vision-language tasks.
We also present Griffon-G, a general large multimodal model that addresses both vision-centric and vision-language tasks within a single end-to-end paradigm.
- Score: 27.45225442048711
- License:
- Abstract: Large Multimodal Models (LMMs) have achieved significant breakthroughs in various vision-language and vision-centric tasks based on auto-regressive modeling. However, these models typically focus on either vision-centric tasks, such as visual grounding and region description, or vision-language tasks, like image caption and multi-scenario VQAs. None of the LMMs have yet comprehensively unified both types of tasks within a single model, as seen in Large Language Models in the natural language processing field. Furthermore, even with abundant multi-task instruction-following data, directly stacking these data for universal capabilities extension remains challenging. To address these issues, we introduce a novel multi-dimension curated and consolidated multimodal dataset, named CCMD-8M, which overcomes the data barriers of unifying vision-centric and vision-language tasks through multi-level data curation and multi-task consolidation. More importantly, we present Griffon-G, a general large multimodal model that addresses both vision-centric and vision-language tasks within a single end-to-end paradigm. Griffon-G resolves the training collapse issue encountered during the joint optimization of these tasks, achieving better training efficiency. Evaluations across multimodal benchmarks, general Visual Question Answering (VQA) tasks, scene text-centric VQA tasks, document-related VQA tasks, Referring Expression Comprehension, and object detection demonstrate that Griffon-G surpasses the advanced LMMs and achieves expert-level performance in complicated vision-centric tasks.
Related papers
- VL-GLUE: A Suite of Fundamental yet Challenging Visuo-Linguistic Reasoning Tasks [48.67062958311173]
VL-GLUE is a multitask benchmark for natural language understanding.
We show that this benchmark is quite challenging for existing large-scale vision-language models.
arXiv Detail & Related papers (2024-10-17T15:27:17Z) - UnifiedMLLM: Enabling Unified Representation for Multi-modal Multi-tasks With Large Language Model [11.885204227946549]
We propose a comprehensive model designed to represent various tasks using a unified representation.
Our model exhibits strong capabilities in comprehending the implicit intent of user instructions.
Our approach exhibits exceptional scalability and generality.
arXiv Detail & Related papers (2024-08-05T14:27:39Z) - VisionLLM v2: An End-to-End Generalist Multimodal Large Language Model for Hundreds of Vision-Language Tasks [89.24440488456405]
VisionLLM v2 is an end-to-end generalist multimodal large model (MLLM)
It unifies visual perception, understanding, and generation within a single framework.
arXiv Detail & Related papers (2024-06-12T16:44:50Z) - Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models [87.47400128150032]
We propose a novel LMM architecture named Lumen, a Large multimodal model with versatile vision-centric capability enhancement.
Lumen first promotes fine-grained vision-language concept alignment.
Then the task-specific decoding is carried out by flexibly routing the shared representation to lightweight task decoders.
arXiv Detail & Related papers (2024-03-12T04:13:45Z) - Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model [83.85856356798531]
VistaLLM is a visual system that addresses coarse- and fine-grained vision-language tasks.
It employs a gradient-aware adaptive sampling technique to represent binary segmentation masks as sequences.
We also introduce a novel task, AttCoSeg, which boosts the model's reasoning and grounding capability over multiple input images.
arXiv Detail & Related papers (2023-12-19T18:53:01Z) - Enhancing Visual Grounding and Generalization: A Multi-Task Cycle Training Approach for Vision-Language Models [41.64717254672843]
Visual grounding occupies a pivotal position in multi-modality vision-language models.
We propose ViLaM, a large multi-modality model, that supports multi-tasks of VG.
ViLaM extends a wide range of instructions, thereby significantly enhancing its generalization and interaction potentials.
arXiv Detail & Related papers (2023-11-21T03:40:09Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - Uni-Perceiver v2: A Generalist Model for Large-Scale Vision and
Vision-Language Tasks [86.66733026149892]
We propose Uni-Perceiver v2, which is the first generalist model capable of handling major large-scale vision and vision-gnostic tasks.
Specifically, images are encoded as general region proposals, while texts are encoded via a Transformer-based language model.
Uni-Perceiver v2 achieves competitive performance on a broad range of vision and vision-language tasks.
arXiv Detail & Related papers (2022-11-17T18:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.