A Trust-Region Method for Graphical Stein Variational Inference
- URL: http://arxiv.org/abs/2410.16195v1
- Date: Mon, 21 Oct 2024 16:59:01 GMT
- Title: A Trust-Region Method for Graphical Stein Variational Inference
- Authors: Liam Pavlovic, David M. Rosen,
- Abstract summary: Stein variational (SVI) is a sample-based approximate inference technique that generates a sample set by jointly optimizing the samples locations to an information-theoretic measure.
We propose a novel trust-conditioned approach for SVI that successfully addresses each these challenges.
- Score: 3.5516599670943774
- License:
- Abstract: Stein variational inference (SVI) is a sample-based approximate Bayesian inference technique that generates a sample set by jointly optimizing the samples' locations to minimize an information-theoretic measure of discrepancy with the target probability distribution. SVI thus provides a fast and significantly more sample-efficient approach to Bayesian inference than traditional (random-sampling-based) alternatives. However, the optimization techniques employed in existing SVI methods struggle to address problems in which the target distribution is high-dimensional, poorly-conditioned, or non-convex, which severely limits the range of their practical applicability. In this paper, we propose a novel trust-region optimization approach for SVI that successfully addresses each of these challenges. Our method builds upon prior work in SVI by leveraging conditional independences in the target distribution (to achieve high-dimensional scaling) and second-order information (to address poor conditioning), while additionally providing an effective adaptive step control procedure, which is essential for ensuring convergence on challenging non-convex optimization problems. Experimental results show our method achieves superior numerical performance, both in convergence rate and sample accuracy, and scales better in high-dimensional distributions, than previous SVI techniques.
Related papers
- Towards Convexity in Anomaly Detection: A New Formulation of SSLM with Unique Optimal Solutions [12.250410918282615]
An unsolved issue in widely used methods as Support Vector Description (SVDD) Small and Large Sphere SVM (MvMs)
We introduce a novel SSLM demonstrated to be impossible with traditional non approaches.
arXiv Detail & Related papers (2024-10-31T09:42:39Z) - An Adaptive Dimension Reduction Estimation Method for High-dimensional
Bayesian Optimization [6.79843988450982]
We propose a two-step optimization framework to extend BO to high-dimensional settings.
Our algorithm offers the flexibility to operate these steps either concurrently or in sequence.
Numerical experiments validate the efficacy of our method in challenging scenarios.
arXiv Detail & Related papers (2024-03-08T16:21:08Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.
New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.
empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2022-10-14T07:39:13Z) - An Adaptive Incremental Gradient Method With Support for Non-Euclidean
Norms [19.41328109094503]
We propose and analyze several novel adaptive variants of the popular SAGA algorithm.
We establish its convergence guarantees under general settings.
We improve the analysis of SAGA to support non-Euclidean norms.
arXiv Detail & Related papers (2022-04-28T09:43:07Z) - Variance-Reduced Heterogeneous Federated Learning via Stratified Client
Selection [31.401919362978017]
We propose a novel stratified client selection scheme to reduce the variance for the pursuit of better convergence and higher accuracy.
We present an optimized sample size allocation scheme by considering the diversity of stratum's variability.
Experimental results confirm that our approach not only allows for better performance relative to state-of-the-art methods but also is compatible with prevalent FL algorithms.
arXiv Detail & Related papers (2022-01-15T05:41:36Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
A default assumption in many machine learning scenarios is that the training and test samples are drawn from the same probability distribution.
We propose a novel one-step approach that jointly learns the predictive model and the associated weights in one optimization.
arXiv Detail & Related papers (2020-07-08T11:35:47Z) - Distributionally Robust Bayesian Optimization [121.71766171427433]
We present a novel distributionally robust Bayesian optimization algorithm (DRBO) for zeroth-order, noisy optimization.
Our algorithm provably obtains sub-linear robust regret in various settings.
We demonstrate the robust performance of our method on both synthetic and real-world benchmarks.
arXiv Detail & Related papers (2020-02-20T22:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.