On Creating an English-Thai Code-switched Machine Translation in Medical Domain
- URL: http://arxiv.org/abs/2410.16221v1
- Date: Mon, 21 Oct 2024 17:25:32 GMT
- Title: On Creating an English-Thai Code-switched Machine Translation in Medical Domain
- Authors: Parinthapat Pengpun, Krittamate Tiankanon, Amrest Chinkamol, Jiramet Kinchagawat, Pitchaya Chairuengjitjaras, Pasit Supholkhan, Pubordee Aussavavirojekul, Chiraphat Boonnag, Kanyakorn Veerakanjana, Hirunkul Phimsiri, Boonthicha Sae-jia, Nattawach Sataudom, Piyalitt Ittichaiwong, Peerat Limkonchotiwat,
- Abstract summary: Machine translation (MT) in the medical domain plays a pivotal role in enhancing healthcare quality and disseminating medical knowledge.
Despite advancements in English-Thai MT technology, common MT approaches often underperform in the medical field due to their inability to precisely translate medical terminologies.
Our research prioritizes not merely improving translation accuracy but also maintaining medical terminology in English.
- Score: 2.0737832185611524
- License:
- Abstract: Machine translation (MT) in the medical domain plays a pivotal role in enhancing healthcare quality and disseminating medical knowledge. Despite advancements in English-Thai MT technology, common MT approaches often underperform in the medical field due to their inability to precisely translate medical terminologies. Our research prioritizes not merely improving translation accuracy but also maintaining medical terminology in English within the translated text through code-switched (CS) translation. We developed a method to produce CS medical translation data, fine-tuned a CS translation model with this data, and evaluated its performance against strong baselines, such as Google Neural Machine Translation (NMT) and GPT-3.5/GPT-4. Our model demonstrated competitive performance in automatic metrics and was highly favored in human preference evaluations. Our evaluation result also shows that medical professionals significantly prefer CS translations that maintain critical English terms accurately, even if it slightly compromises fluency. Our code and test set are publicly available https://github.com/preceptorai-org/NLLB_CS_EM_NLP2024.
Related papers
- Searching for Best Practices in Medical Transcription with Large Language Model [1.0855602842179624]
This paper introduces a novel approach leveraging a Large Language Model (LLM) to generate highly accurate medical transcripts.
Our methodology integrates advanced language modeling techniques to lower the Word Error Rate (WER) and ensure the precise recognition of critical medical terms.
arXiv Detail & Related papers (2024-10-04T03:41:16Z) - Google Translate Error Analysis for Mental Healthcare Information:
Evaluating Accuracy, Comprehensibility, and Implications for Multilingual
Healthcare Communication [8.178490288773013]
This study explores the use of Google Translate for translating mental healthcare (MHealth) information from English to Persian, Arabic, Turkish, Romanian, and Spanish.
Native speakers of the target languages manually assessed the GT translations, focusing on medical terminology accuracy, comprehensibility, and critical syntactic/semantic errors.
GT output analysis revealed challenges in accurately translating medical terminology, particularly in Arabic, Romanian, and Persian.
arXiv Detail & Related papers (2024-02-06T14:16:32Z) - An approach for mistranslation removal from popular dataset for Indic MT
Task [5.4755933832880865]
We propose an algorithm to remove mistranslations from the training corpus and evaluate its performance and efficiency.
Two Indic languages (ILs), namely, Hindi (HIN) and Odia (ODI) are chosen for the experiment.
The quality of the translations in the experiment is evaluated using standard metrics such as BLEU, METEOR, and RIBES.
arXiv Detail & Related papers (2024-01-12T06:37:19Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
We propose ChiMed-GPT, a benchmark LLM designed explicitly for Chinese medical domain.
ChiMed-GPT undergoes a comprehensive training regime with pre-training, SFT, and RLHF.
We analyze possible biases through prompting ChiMed-GPT to perform attitude scales regarding discrimination of patients.
arXiv Detail & Related papers (2023-11-10T12:25:32Z) - Competency-Aware Neural Machine Translation: Can Machine Translation
Know its Own Translation Quality? [61.866103154161884]
Neural machine translation (NMT) is often criticized for failures that happen without awareness.
We propose a novel competency-aware NMT by extending conventional NMT with a self-estimator.
We show that the proposed method delivers outstanding performance on quality estimation.
arXiv Detail & Related papers (2022-11-25T02:39:41Z) - A Semi-supervised Approach for a Better Translation of Sentiment in
Dialectical Arabic UGT [2.6763498831034034]
We introduce a semi-supervised approach that exploits both monolingual and parallel data for training an NMT system.
We will show that our proposed system can significantly help with correcting sentiment errors detected in the online translation of dialectical Arabic UGT.
arXiv Detail & Related papers (2022-10-21T11:55:55Z) - On the Evaluation of Machine Translation for Terminology Consistency [31.67296249688388]
We propose metrics to measure the consistency of MT output with regards to a domain terminology.
We perform studies on the COVID-19 domain over 5 languages, also performing terminology-targeted human evaluation.
arXiv Detail & Related papers (2021-06-22T15:59:32Z) - It's Easier to Translate out of English than into it: Measuring Neural
Translation Difficulty by Cross-Mutual Information [90.35685796083563]
Cross-mutual information (XMI) is an asymmetric information-theoretic metric of machine translation difficulty.
XMI exploits the probabilistic nature of most neural machine translation models.
We present the first systematic and controlled study of cross-lingual translation difficulties using modern neural translation systems.
arXiv Detail & Related papers (2020-05-05T17:38:48Z) - On the Limitations of Cross-lingual Encoders as Exposed by
Reference-Free Machine Translation Evaluation [55.02832094101173]
Evaluation of cross-lingual encoders is usually performed either via zero-shot cross-lingual transfer in supervised downstream tasks or via unsupervised cross-lingual similarity.
This paper concerns ourselves with reference-free machine translation (MT) evaluation where we directly compare source texts to (sometimes low-quality) system translations.
We systematically investigate a range of metrics based on state-of-the-art cross-lingual semantic representations obtained with pretrained M-BERT and LASER.
We find that they perform poorly as semantic encoders for reference-free MT evaluation and identify their two key limitations.
arXiv Detail & Related papers (2020-05-03T22:10:23Z) - Explicit Reordering for Neural Machine Translation [50.70683739103066]
In Transformer-based neural machine translation (NMT), the positional encoding mechanism helps the self-attention networks to learn the source representation with order dependency.
We propose a novel reordering method to explicitly model this reordering information for the Transformer-based NMT.
The empirical results on the WMT14 English-to-German, WAT ASPEC Japanese-to-English, and WMT17 Chinese-to-English translation tasks show the effectiveness of the proposed approach.
arXiv Detail & Related papers (2020-04-08T05:28:46Z) - Bootstrapping a Crosslingual Semantic Parser [74.99223099702157]
We adapt a semantic trained on a single language, such as English, to new languages and multiple domains with minimal annotation.
We query if machine translation is an adequate substitute for training data, and extend this to investigate bootstrapping using joint training with English, paraphrasing, and multilingual pre-trained models.
arXiv Detail & Related papers (2020-04-06T12:05:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.