LLaVA-KD: A Framework of Distilling Multimodal Large Language Models
- URL: http://arxiv.org/abs/2410.16236v3
- Date: Thu, 03 Jul 2025 06:59:56 GMT
- Title: LLaVA-KD: A Framework of Distilling Multimodal Large Language Models
- Authors: Yuxuan Cai, Jiangning Zhang, Haoyang He, Xinwei He, Ao Tong, Zhenye Gan, Chengjie Wang, Zhucun Xue, Yong Liu, Xiang Bai,
- Abstract summary: We propose a novel framework to transfer knowledge from l-MLLMs to s-MLLMs.<n>We introduce Multimodal Distillation (MDist) to transfer teacher model's robust representations across both visual and linguistic modalities.<n>We also propose a three-stage training scheme to fully exploit the potential of the proposed distillation strategy.
- Score: 72.68665884790002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of Large Language Models (LLMs) has inspired the development of Multimodal Large Language Models (MLLMs) for unified understanding of vision and language. However, the increasing model size and computational complexity of large-scale MLLMs (l-MLLMs) limit their use in resource-constrained scenarios. Although small-scale MLLMs (s-MLLMs) are designed to reduce computational costs, they typically suffer from performance degradation. To mitigate this limitation, we propose a novel LLaVA-KD framework to transfer knowledge from l-MLLMs to s-MLLMs. Specifically, we introduce Multimodal Distillation (MDist) to transfer teacher model's robust representations across both visual and linguistic modalities, and Relation Distillation (RDist) to transfer teacher model's ability to capture visual token relationships. Additionally, we propose a three-stage training scheme to fully exploit the potential of the proposed distillation strategy: 1) Distilled Pre-Training to strengthen the alignment between visual-linguistic representations in s-MLLMs, 2) Supervised Fine-Tuning to equip the s-MLLMs with multimodal understanding capacity, and 3) Distilled Fine-Tuning to refine s-MLLM's knowledge. Our approach significantly improves s-MLLMs performance without altering the model architecture. Extensive experiments and ablation studies validate the effectiveness of each proposed component. Code will be available at https://github.com/Fantasyele/LLaVA-KD.
Related papers
- Orchestrate Multimodal Data with Batch Post-Balancing to Accelerate Multimodal Large Language Model Training [12.911726316306755]
We introduce OrchMLLM, a framework designed to mitigate the inefficiencies in MLLM training caused by Modality Composition Incoherence.
Batch Post-Balancing Dispatcher and MLLM Global Orchestrator are used to eliminate mini-batch imbalances in sequential data.
OrchMLLM achieves a Model FLOPs Utilization (MFU) of $41.6%$ when training an 84B MLLM with three modalities on $2560$ H100 GPU, outperforming Megatron-LM by up to $3.1times$ in throughput.
arXiv Detail & Related papers (2025-03-31T08:24:23Z) - Can MLLMs Guide Weakly-Supervised Temporal Action Localization Tasks? [6.7065734065794835]
We introduce a novel learning paradigm termed MLLM4WTAL.
It harnesses the potential of MLLM to offer temporal action key semantics and complete semantic priors.
It achieves this by integrating two distinct modules: Key Semantic Matching (KSM) and Complete Semantic Reconstruction (CSR)
arXiv Detail & Related papers (2024-11-13T09:37:24Z) - LLM2CLIP: Powerful Language Model Unlocks Richer Visual Representation [72.02635550088546]
This work explores how large language models (LLMs) can enhance CLIP's capability, especially for processing longer and more complex image captions.<n>We introduce a caption-to-caption contrastive fine-tuning framework, significantly enhancing the discriminative quality of LLM outputs.<n>Our approach outperforms LoRA-based methods, achieving nearly fourfold faster training with superior performance.
arXiv Detail & Related papers (2024-11-07T18:59:16Z) - LLaVA-MoD: Making LLaVA Tiny via MoE Knowledge Distillation [41.05687297326706]
LLaVA-MoD is a framework designed to enable the efficient training of small-scale Multimodal Language Models.
We optimize the network structure of s-MLLM by integrating a sparse Mixture of Experts architecture into the language model.
We also propose a progressive knowledge transfer strategy to ensure comprehensive knowledge migration.
arXiv Detail & Related papers (2024-08-28T15:52:23Z) - SEA: Supervised Embedding Alignment for Token-Level Visual-Textual Integration in MLLMs [40.74693126923826]
Multimodal Large Language Models (MLLMs) have recently demonstrated remarkable perceptual and reasoning abilities.
Training adapters with image-level supervision often results in significant misalignment.
We introduce Supervised Embedding Alignment (SEA), a token-level alignment method that leverages vision-language pre-trained models.
arXiv Detail & Related papers (2024-08-21T17:58:02Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - LLAVADI: What Matters For Multimodal Large Language Models Distillation [77.73964744238519]
In this work, we do not propose a new efficient model structure or train small-scale MLLMs from scratch.
Our studies involve training strategies, model choices, and distillation algorithms in the knowledge distillation process.
By evaluating different benchmarks and proper strategy, even a 2.7B small-scale model can perform on par with larger models with 7B or 13B parameters.
arXiv Detail & Related papers (2024-07-28T06:10:47Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
Fine-tuning large language models (LLMs) to diverse applications is crucial to meet complex demands.
Recent studies suggest decomposing a fine-tuned LLM into a base model and corresponding delta weights, which are then compressed using low-rank or low-bit approaches to reduce costs.
In this work, we observe that existing low-rank and low-bit compression methods can significantly harm the model performance for task-specific fine-tuned LLMs.
arXiv Detail & Related papers (2024-06-13T07:57:27Z) - NoteLLM-2: Multimodal Large Representation Models for Recommendation [60.17448025069594]
We investigate the potential of Large Language Models to enhance multimodal representation in multimodal item-to-item recommendations.
One feasible method is the transfer of Multimodal Large Language Models (MLLMs) for representation tasks.
We propose a novel training framework, NoteLLM-2, specifically designed for multimodal representation.
arXiv Detail & Related papers (2024-05-27T03:24:01Z) - An empirical study of LLaMA3 quantization: from LLMs to MLLMs [54.91212829143966]
The LLaMA family is one of the most powerful open-source large language models (LLMs)
LLaMA3 models have achieved impressive performance in various domains with super-large scale pre-training on over 15T tokens of data.
We evaluate the 10 existing post-training quantization and LoRA fine-tuning (LoRA-FT) methods of LLaMA3 on 1-8 bits and various datasets to reveal the low-bit quantization performance of LLaMA3.
arXiv Detail & Related papers (2024-04-22T10:03:03Z) - LION : Empowering Multimodal Large Language Model with Dual-Level Visual
Knowledge [58.82222646803248]
Multimodal Large Language Models (MLLMs) have endowed LLMs with the ability to perceive and understand multi-modal signals.
Most of the existing MLLMs mainly adopt vision encoders pretrained on coarsely aligned image-text pairs, leading to insufficient extraction and reasoning of visual knowledge.
We propose a dual-Level vIsual knedgeOwl eNhanced Multimodal Large Language Model (LION), which empowers the MLLM by injecting visual knowledge in two levels.
arXiv Detail & Related papers (2023-11-20T15:56:44Z) - Mind's Mirror: Distilling Self-Evaluation Capability and Comprehensive Thinking from Large Language Models [20.28989820878285]
Large language models (LLMs) have achieved remarkable advancements in natural language processing.
The massive scale and computational demands of these models present formidable challenges when considering their practical deployment in resource-constrained environments.
arXiv Detail & Related papers (2023-11-15T18:56:23Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
multimodal large language models (MLLMs) have attracted growing interest.
This work delves into enabling LLMs to tackle more vision-language-related tasks.
InfMLLM achieves either state-of-the-art (SOTA) performance or performance comparable to recent MLLMs.
arXiv Detail & Related papers (2023-11-12T09:58:16Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.