Can MLLMs Guide Weakly-Supervised Temporal Action Localization Tasks?
- URL: http://arxiv.org/abs/2411.08466v1
- Date: Wed, 13 Nov 2024 09:37:24 GMT
- Title: Can MLLMs Guide Weakly-Supervised Temporal Action Localization Tasks?
- Authors: Quan Zhang, Yuxin Qi,
- Abstract summary: We introduce a novel learning paradigm termed MLLM4WTAL.
It harnesses the potential of MLLM to offer temporal action key semantics and complete semantic priors.
It achieves this by integrating two distinct modules: Key Semantic Matching (KSM) and Complete Semantic Reconstruction (CSR)
- Score: 6.7065734065794835
- License:
- Abstract: Recent breakthroughs in Multimodal Large Language Models (MLLMs) have gained significant recognition within the deep learning community, where the fusion of the Video Foundation Models (VFMs) and Large Language Models(LLMs) has proven instrumental in constructing robust video understanding systems, effectively surmounting constraints associated with predefined visual tasks. These sophisticated MLLMs exhibit remarkable proficiency in comprehending videos, swiftly attaining unprecedented performance levels across diverse benchmarks. However, their operation demands substantial memory and computational resources, underscoring the continued importance of traditional models in video comprehension tasks. In this paper, we introduce a novel learning paradigm termed MLLM4WTAL. This paradigm harnesses the potential of MLLM to offer temporal action key semantics and complete semantic priors for conventional Weakly-supervised Temporal Action Localization (WTAL) methods. MLLM4WTAL facilitates the enhancement of WTAL by leveraging MLLM guidance. It achieves this by integrating two distinct modules: Key Semantic Matching (KSM) and Complete Semantic Reconstruction (CSR). These modules work in tandem to effectively address prevalent issues like incomplete and over-complete outcomes common in WTAL methods. Rigorous experiments are conducted to validate the efficacy of our proposed approach in augmenting the performance of various heterogeneous WTAL models.
Related papers
- LLaVA-KD: A Framework of Distilling Multimodal Large Language Models [70.19607283302712]
We propose a novel framework to transfer knowledge from l-MLLM to s-MLLM.
Specifically, we introduce Multimodal Distillation (MDist) to minimize the divergence between the visual-textual output distributions of l-MLLM and s-MLLM.
We also propose a three-stage training scheme to fully exploit the potential of s-MLLM.
arXiv Detail & Related papers (2024-10-21T17:41:28Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
This paper investigates whether the pattern recognition and sequence modeling capabilities of LLMs can be extended to the domain of knowledge tracing.
We compare two approaches to using LLMs for this task, zero-shot prompting and model fine-tuning, with existing, non-LLM approaches to knowledge tracing.
While LLM-based approaches do not achieve state-of-the-art performance, fine-tuned LLMs surpass the performance of naive baseline models and perform on par with standard Bayesian Knowledge Tracing approaches.
arXiv Detail & Related papers (2024-02-29T14:06:34Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.