Multi-product Zeno effect with higher order convergence rates
- URL: http://arxiv.org/abs/2410.16260v2
- Date: Thu, 28 Nov 2024 23:03:05 GMT
- Title: Multi-product Zeno effect with higher order convergence rates
- Authors: Tim Möbus,
- Abstract summary: The quantum Zeno effect approximates the dynamics of a projected Hamiltonian or Lindbladian by any quantum operation that converges to the desired subspace.
We improve the convergence rate using a multi-product formula to achieve any power of $1/nK+1$, employing a modified Chernoff Lemma, a modified Dunford-Segal approximation, and the holomorphic functional calculus.
- Score: 0.0
- License:
- Abstract: To implement the dynamics of a projected Hamiltonian or Lindbladian, the quantum Zeno effect is a fundamental quantum phenomenon that approximates the effective dynamic by intersecting the Hamiltonian or Lindblad evolution by any quantum operation that converges to the desired projected subspace. Unlike the related Trotter product formula, the best-known convergence rate of the quantum Zeno effect is limited to the order $1/n$. In this work, we improve the convergence rate using a multi-product formula to achieve any power of $1/n^{K+1}$, employing a modified Chernoff Lemma, a modified Dunford-Segal approximation, and the holomorphic functional calculus. We briefly illustrate this scheme using the bosonic cat code as an example, along with a broader class of cases governed by the `Bang-Bang' method for decoupling systems from their environment.
Related papers
- Quantum correlations enhanced in hybrid optomechanical system via phase tuning [0.0]
This work presents a theoretical framework for enhancing quantum correlations in a hybrid double-cavity optomechanical system.
We find that tuning the phase $phi$ is essential for maximizing photon-phonon entanglement.
arXiv Detail & Related papers (2024-10-13T14:11:07Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Dual Exponential Coupled Cluster Theory: Unitary Adaptation,
Implementation in the Variational Quantum Eigensolver Framework and Pilot
Applications [0.0]
We have developed a unitary variant of a double exponential coupled cluster theory.
The method relies upon the nontrivial action of a unitary, containing a set of rank-two scattering operators.
We have shown that all our schemes can perform uniformly well throughout the molecular potential energy surface.
arXiv Detail & Related papers (2022-07-12T05:10:58Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Non-perturbative analytical diagonalization of Hamiltonians with
application to coupling suppression and enhancement in cQED [0.0]
Deriving effective Hamiltonian models plays an essential role in quantum theory.
We present two symbolic methods for computing effective Hamiltonian models.
We study the ZZ and cross-resonance interactions of superconducting qubits systems.
arXiv Detail & Related papers (2021-11-30T19:01:44Z) - Optimal convergence rate in the quantum Zeno effect for open quantum
systems in infinite dimensions [1.5229257192293197]
In open quantum systems, the quantum Zeno effect consists in frequent applications of a given quantum operation.
We prove the optimal convergence rate of order $tfrac1n$ of the Zeno sequence by proving explicit error bounds.
We generalize the convergence result for the Zeno effect in two directions.
arXiv Detail & Related papers (2021-11-27T14:41:10Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Exploring entanglement and optimization within the Hamiltonian
Variational Ansatz [0.4881924950569191]
We study a family of quantum circuits called the Hamiltonian Variational Ansatz (HVA)
HVA exhibits favorable structural properties such as mild or entirely absent barren plateaus and a restricted state space.
HVA can find accurate approximations to the ground states of a modified Haldane-Shastry Hamiltonian on a ring.
arXiv Detail & Related papers (2020-08-07T01:28:26Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.