論文の概要: FrugalNeRF: Fast Convergence for Few-shot Novel View Synthesis without Learned Priors
- arxiv url: http://arxiv.org/abs/2410.16271v1
- Date: Mon, 21 Oct 2024 17:59:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:18:14.224801
- Title: FrugalNeRF: Fast Convergence for Few-shot Novel View Synthesis without Learned Priors
- Title(参考訳): FrugalNeRF: 先行学習のない新規ビュー合成のための高速収束
- Authors: Chin-Yang Lin, Chung-Ho Wu, Chang-Han Yeh, Shih-Han Yen, Cheng Sun, Yu-Lun Liu,
- Abstract要約: FrugalNeRFは,複数スケールにわたる重み共有ボクセルを利用してシーンの詳細を効率よく表現する,数発のNeRFフレームワークである。
我々の重要な貢献は、スケールをまたいだ再射誤差に基づいて擬似基底真理深さを選択する、クロススケールな幾何適応スキームである。
LLFF、DTU、RealEstate-10Kの実験では、FrugalNeRFは他の数発のNeRF法よりも優れ、トレーニング時間を大幅に短縮した。
- 参考スコア(独自算出の注目度): 6.729663383705042
- License:
- Abstract: Neural Radiance Fields (NeRF) face significant challenges in few-shot scenarios, primarily due to overfitting and long training times for high-fidelity rendering. Existing methods, such as FreeNeRF and SparseNeRF, use frequency regularization or pre-trained priors but struggle with complex scheduling and bias. We introduce FrugalNeRF, a novel few-shot NeRF framework that leverages weight-sharing voxels across multiple scales to efficiently represent scene details. Our key contribution is a cross-scale geometric adaptation scheme that selects pseudo ground truth depth based on reprojection errors across scales. This guides training without relying on externally learned priors, enabling full utilization of the training data. It can also integrate pre-trained priors, enhancing quality without slowing convergence. Experiments on LLFF, DTU, and RealEstate-10K show that FrugalNeRF outperforms other few-shot NeRF methods while significantly reducing training time, making it a practical solution for efficient and accurate 3D scene reconstruction.
- Abstract(参考訳): ニューラル・ラディアンス・フィールド(Neural Radiance Fields、NeRF)は、主に高忠実度レンダリングのための過度な適合と長いトレーニング時間のために、少数のシナリオにおいて重大な課題に直面している。
FreeNeRFやSparseNeRFといった既存の手法では、周波数正規化や事前訓練が行なわれているが、複雑なスケジューリングやバイアスに悩まされている。
FrugalNeRFは,複数スケールにわたる重み共有ボクセルを利用してシーンの詳細を効率よく表現する,数発のNeRFフレームワークである。
我々の重要な貢献は、スケールをまたいだ再射誤差に基づいて擬似基底真理深さを選択する、クロススケールな幾何適応スキームである。
これにより、外部から学んだ事前知識に頼ることなくトレーニングをガイドし、トレーニングデータのフル活用が可能になる。
また、事前訓練された事前の統合も可能で、収束を遅らせることなく品質を向上させることができる。
LLFF、DTU、RealEstate-10Kの実験では、FrugalNeRFは他の数発のNeRF法よりも優れており、トレーニング時間を大幅に短縮し、効率よく正確な3Dシーン再構築のための実用的な解決策となっている。
関連論文リスト
- Few-shot NeRF by Adaptive Rendering Loss Regularization [78.50710219013301]
スパース入力を用いた新しいビュー合成はニューラルラジアンス場(NeRF)に大きな課題をもたらす
近年の研究では、位置レンダリングの周波数規則化は、数発のNeRFに対して有望な結果が得られることが示されている。
我々は,AR-NeRFと呼ばれる数発のNeRFに対して適応レンダリング損失正規化を提案する。
論文 参考訳(メタデータ) (2024-10-23T13:05:26Z) - Spatial Annealing Smoothing for Efficient Few-shot Neural Rendering [106.0057551634008]
我々は,Spatial Annealing smoothing regularized NeRF (SANeRF) という,正確で効率的な数発のニューラルレンダリング手法を導入する。
単に1行のコードを追加することで、SANeRFは現在の数ショットのNeRF法と比較して、より優れたレンダリング品質とはるかに高速な再構築速度を提供する。
論文 参考訳(メタデータ) (2024-06-12T02:48:52Z) - CorresNeRF: Image Correspondence Priors for Neural Radiance Fields [45.40164120559542]
CorresNeRFは、市販の方法によって計算された画像対応の事前情報を利用して、NeRFトレーニングを監督する新しい手法である。
本手法は,異なるNeRF変種にまたがるプラグ・アンド・プレイモジュールとして適用可能であることを示す。
論文 参考訳(メタデータ) (2023-12-11T18:55:29Z) - Instant Continual Learning of Neural Radiance Fields [78.08008474313809]
ニューラルレイディアンス場(NeRF)は,新規な視点合成と3次元シーン再構成の有効な方法として出現している。
本稿では,リプレイに基づく手法とハイブリッドな明示的シーン表現を併用したNeRFの連続学習フレームワークを提案する。
提案手法は, 連続的な環境下での学習において, 従来手法よりも高い精度で再現性能を向上すると同時に, 桁違いの高速化を図っている。
論文 参考訳(メタデータ) (2023-09-04T21:01:55Z) - FreeNeRF: Improving Few-shot Neural Rendering with Free Frequency
Regularization [32.1581416980828]
本稿では、従来の手法よりも優れた驚くほど単純なベースラインである周波数正規化NeRF(FreeNeRF)を提案する。
我々は、数ショットのニューラルレンダリングにおける重要な課題を分析し、NeRFのトレーニングにおいて周波数が重要な役割を果たすことを発見した。
論文 参考訳(メタデータ) (2023-03-13T18:59:03Z) - AligNeRF: High-Fidelity Neural Radiance Fields via Alignment-Aware
Training [100.33713282611448]
我々は、高分解能データによるNeRFのトレーニングに関する最初のパイロット研究を行う。
本稿では,多層パーセプトロンと畳み込み層との結合を含む,対応する解を提案する。
私たちのアプローチは、明らかなトレーニング/テストコストを導入することなく、ほぼ無償です。
論文 参考訳(メタデータ) (2022-11-17T17:22:28Z) - EfficientNeRF: Efficient Neural Radiance Fields [63.76830521051605]
我々は,3次元シーンを表現し,新しい映像を合成する効率的なNeRF法として,EfficientNeRFを提案する。
本手法は, トレーニング時間の88%以上を短縮し, 200FPS以上のレンダリング速度を達成できるが, 競争精度は高い。
論文 参考訳(メタデータ) (2022-06-02T05:36:44Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
事前訓練されたモデルを用いたディープ畳み込みニューラルネットワーク(CNN)の微調整は、より大きなデータセットから学習した知識をターゲットタスクに転送するのに役立つ。
転送学習環境におけるバックプロパゲーションを深める戦略であるRIFLEを提案する。
RIFLEは、深いCNN層の重み付けに意味のあるアップデートをもたらし、低レベルの機能学習を改善する。
論文 参考訳(メタデータ) (2020-07-07T11:27:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。