Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators
- URL: http://arxiv.org/abs/2410.16290v1
- Date: Sat, 05 Oct 2024 20:03:57 GMT
- Title: Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators
- Authors: Armeet Singh Jatyani, Jiayun Wang, Zihui Wu, Miguel Liu-Schiaffini, Bahareh Tolooshams, Anima Anandkumar,
- Abstract summary: Compressed Sensing MRI reconstructs images of the body's internal anatomy from undersampled and compressed measurements.
Deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements.
We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI.
- Score: 72.79532467687427
- License:
- Abstract: Compressed Sensing MRI (CS-MRI) reconstructs images of the body's internal anatomy from undersampled and compressed measurements, thereby reducing scan times and minimizing the duration patients need to remain still. Recently, deep neural networks have shown great potential for reconstructing high-quality images from highly undersampled measurements. However, since deep neural networks operate on a fixed discretization, one needs to train multiple models for different measurement subsampling patterns and image resolutions. This approach is highly impractical in clinical settings, where subsampling patterns and image resolutions are frequently varied to accommodate different imaging and diagnostic requirements. We propose a unified model that is robust to different subsampling patterns and image resolutions in CS-MRI. Our model is based on neural operators, a discretization-agnostic architecture. We use neural operators in both image and measurement (frequency) space, which capture local and global image features for MRI reconstruction. Empirically, we achieve consistent performance across different subsampling rates and patterns, with up to 4x lower NMSE and 5 dB PSNR improvements over the state-of-the-art method. We also show the model is agnostic to image resolutions with zero-shot super-resolution results. Our unified model is a promising tool that is agnostic to measurement subsampling and imaging resolutions in MRI, offering significant utility in clinical settings where flexibility and adaptability are essential for efficient and reliable imaging.
Related papers
- NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - CoNeS: Conditional neural fields with shift modulation for multi-sequence MRI translation [5.662694302758443]
Multi-sequence magnetic resonance imaging (MRI) has found wide applications in both modern clinical studies and deep learning research.
It frequently occurs that one or more of the MRI sequences are missing due to different image acquisition protocols or contrast agent contraindications of patients.
One promising approach is to leverage generative models to synthesize the missing sequences, which can serve as a surrogate acquisition.
arXiv Detail & Related papers (2023-09-06T19:01:58Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - CL-MRI: Self-Supervised Contrastive Learning to Improve the Accuracy of Undersampled MRI Reconstruction [25.078280843551322]
We introduce a self-supervised pretraining procedure using contrastive learning to improve the accuracy of undersampled MRI reconstruction.
Our experiments demonstrate improved reconstruction accuracy across a range of acceleration factors and datasets.
arXiv Detail & Related papers (2023-06-01T10:29:58Z) - Generative AI for Rapid Diffusion MRI with Improved Image Quality,
Reliability and Generalizability [3.6119644566822484]
We employ a Swin UNEt Transformers model, trained on augmented Human Connectome Project data, to perform generalized denoising of dMRI.
We demonstrate super-resolution with artificially downsampled HCP data in normal adult volunteers.
We exceed current state-of-the-art denoising methods in accuracy and test-retest reliability of rapid diffusion tensor imaging requiring only 90 seconds of scan time.
arXiv Detail & Related papers (2023-03-10T03:39:23Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
We propose a deep-learning approach, aiming at reconstructing high-quality images from accelerated MRI acquisition.
Specifically, we use Convolutional Neural Network (CNN) to learn the differences between the aliased images and the original images.
Considering the peculiarity of the down-sampled k-space data, we introduce a new term to the loss function in learning, which effectively employs the given k-space data.
arXiv Detail & Related papers (2020-01-13T19:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.