論文の概要: Vulnerabilities in Machine Learning-Based Voice Disorder Detection Systems
- arxiv url: http://arxiv.org/abs/2410.16341v1
- Date: Mon, 21 Oct 2024 10:14:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:16.726828
- Title: Vulnerabilities in Machine Learning-Based Voice Disorder Detection Systems
- Title(参考訳): 機械学習に基づく音声障害検出システムにおける脆弱性
- Authors: Gianpaolo Perelli, Andrea Panzino, Roberto Casula, Marco Micheletto, Giulia Orrù, Gian Luca Marcialis,
- Abstract要約: 分類を逆転させ、信頼性を損なう攻撃の可能性を探る。
個人の健康情報の重要性を考えると、攻撃の種類が効果的であるかを理解することは、このようなシステムのセキュリティを改善するための第一歩となる。
以上の結果から,医療領域で使用される機械学習システムにおいて,これらの脆弱性に対処する必要性が指摘され,最も効果的な攻撃戦略が明らかになった。
- 参考スコア(独自算出の注目度): 3.4745231630177136
- License:
- Abstract: The impact of voice disorders is becoming more widely acknowledged as a public health issue. Several machine learning-based classifiers with the potential to identify disorders have been used in recent studies to differentiate between normal and pathological voices and sounds. In this paper, we focus on analyzing the vulnerabilities of these systems by exploring the possibility of attacks that can reverse classification and compromise their reliability. Given the critical nature of personal health information, understanding which types of attacks are effective is a necessary first step toward improving the security of such systems. Starting from the original audios, we implement various attack methods, including adversarial, evasion, and pitching techniques, and evaluate how state-of-the-art disorder detection models respond to them. Our findings identify the most effective attack strategies, underscoring the need to address these vulnerabilities in machine-learning systems used in the healthcare domain.
- Abstract(参考訳): 音声障害の影響は公衆衛生問題として広く認識されるようになった。
障害を識別する可能性のある機械学習に基づく分類器は、近年、正常な声と病理的な音を区別するために用いられている。
本稿では,分類を逆転し,信頼性を損なう可能性のある攻撃の可能性を探ることで,これらのシステムの脆弱性を分析することに焦点を当てる。
個人の健康情報の重要性を考えると、攻撃の種類が効果的であるかを理解することは、このようなシステムのセキュリティを改善するための第一歩となる。
従来の音声から, 敵意, 回避, 投球など様々な攻撃手法を実装し, 最先端の障害検出モデルがそれにどう反応するかを評価する。
以上の結果から,医療領域で使用される機械学習システムにおいて,これらの脆弱性に対処する必要性が指摘され,最も効果的な攻撃戦略が明らかになった。
関連論文リスト
- Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
模倣攻撃は 不正な識別と その後の攻撃者の認証につながる
顔認識と同様に、模倣攻撃も機械学習で検出できる。
本稿では,未使用の機能と時間認識の深層学習戦略を組み合わせることで,高い分類精度を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T07:26:10Z) - Selfsupervised learning for pathological speech detection [0.0]
音声生成は、様々な神経変性疾患による影響と破壊を受けやすい。
これらの障害は、異常な発声パターンと不正確な調音を特徴とする病的発声を引き起こす。
ニューロタイプ話者とは異なり、言語障害や障害のある患者は、AlexaやSiriなど、さまざまなバーチャルアシスタントにアクセスできない。
論文 参考訳(メタデータ) (2024-05-16T07:12:47Z) - What to Remember: Self-Adaptive Continual Learning for Audio Deepfake
Detection [53.063161380423715]
既存の検出モデルは、既知のディープフェイク音声を識別することに成功したが、新しい攻撃タイプに遭遇する際には苦労している。
本稿では,Radian Weight Modification (RWM) と呼ばれる連続的な学習手法を提案する。
論文 参考訳(メタデータ) (2023-12-15T09:52:17Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
本研究では,CPSの異常検出器とルールチェッカーを同時に回避する対向攻撃を提案する。
既存の勾配に基づくアプローチにインスパイアされた我々の敵攻撃は、センサーとアクチュエーターの値にノイズを発生させ、遺伝的アルゴリズムを使って後者を最適化する。
実世界の2つの重要なインフラテストベッドに対するアプローチを実装し、検出器の分類精度を平均50%以上下げることに成功した。
論文 参考訳(メタデータ) (2021-05-22T12:19:03Z) - Adversarial Attack and Defense Strategies for Deep Speaker Recognition
Systems [44.305353565981015]
本稿では, 深層話者認識システムに対する最先端の敵攻撃について考察し, 強力な防御手法を対策として用いた。
実験により、話者認識システムは敵攻撃に弱いことが示され、最も強い攻撃はシステムの精度を94%から0%に下げることができる。
論文 参考訳(メタデータ) (2020-08-18T00:58:19Z) - SoK: The Faults in our ASRs: An Overview of Attacks against Automatic
Speech Recognition and Speaker Identification Systems [28.635467696564703]
音声と話者システムのエンドツーエンドアーキテクチャは、画像空間のそれとはかなり異なる攻撃と防御を行うことを示す。
そして、これらのモデルに対する攻撃はほとんど普遍的に転送できないことを実験的に実証した。
論文 参考訳(メタデータ) (2020-07-13T18:52:25Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。