Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification
- URL: http://arxiv.org/abs/2410.16344v1
- Date: Mon, 21 Oct 2024 13:15:12 GMT
- Title: Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification
- Authors: S. M. Yousuf Iqbal Tomal, Abdullah Al Shafin, Afrida Afaf, Debojit Bhattacharjee,
- Abstract summary: We present a hybrid quantum-classical machine learning model for classification tasks, integrating a 4-qubit quantum circuit with a classical neural network.
The model was trained over 20 epochs, achieving a perfect 100% accuracy on the Iris dataset test set on 16 epoch.
This work contributes to the growing body of research on hybrid quantum-classical models and their applicability to real-world datasets.
- Score: 0.0
- License:
- Abstract: This paper presents a hybrid quantum-classical machine learning model for classification tasks, integrating a 4-qubit quantum circuit with a classical neural network. The quantum circuit is designed to encode the features of the Iris dataset using angle embedding and entangling gates, thereby capturing complex feature relationships that are difficult for classical models alone. The model, which we term a Quantum Convolutional Neural Network (QCNN), was trained over 20 epochs, achieving a perfect 100% accuracy on the Iris dataset test set on 16 epoch. Our results demonstrate the potential of quantum-enhanced models in supervised learning tasks, particularly in efficiently encoding and processing data using quantum resources. We detail the quantum circuit design, parameterized gate selection, and the integration of the quantum layer with classical neural network components. This work contributes to the growing body of research on hybrid quantum-classical models and their applicability to real-world datasets.
Related papers
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - Federated Quantum-Train with Batched Parameter Generation [3.697453416360906]
We introduce the Federated Quantum-Train (QT) framework, which integrates the QT model into federated learning.
Our approach significantly reduces qubit usage from 19 to as low as 8 qubits while reducing generalization error.
arXiv Detail & Related papers (2024-09-04T14:39:11Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
This research explores the integration of quantum computing with classical machine learning for image classification tasks.
We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms.
The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features.
arXiv Detail & Related papers (2024-08-05T22:16:27Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning [0.5999777817331318]
We propose a quantum machine learning approach based on quantum convolutional neural networks for solving multiclass classification problems.
We use the proposed approach to demonstrate the 4-class classification for the case of the MNIST dataset using eight qubits for data encoding and four acnilla qubits.
Our results demonstrate comparable accuracy of our solution with classical convolutional neural networks with comparable numbers of trainable parameters.
arXiv Detail & Related papers (2022-03-29T09:07:18Z) - Comparing concepts of quantum and classical neural network models for
image classification task [0.456877715768796]
This material includes the results of experiments on training and performance of a hybrid quantum-classical neural network.
Although its simulation is time-consuming, the quantum network, although its simulation is time-consuming, overcomes the classical network.
arXiv Detail & Related papers (2021-08-19T18:49:30Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.