Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning
- URL: http://arxiv.org/abs/2203.15368v1
- Date: Tue, 29 Mar 2022 09:07:18 GMT
- Title: Multiclass classification using quantum convolutional neural networks
with hybrid quantum-classical learning
- Authors: Denis Bokhan, Alena S. Mastiukova, Aleksey S. Boev, Dmitrii N.
Trubnikov, Aleksey K. Fedorov
- Abstract summary: We propose a quantum machine learning approach based on quantum convolutional neural networks for solving multiclass classification problems.
We use the proposed approach to demonstrate the 4-class classification for the case of the MNIST dataset using eight qubits for data encoding and four acnilla qubits.
Our results demonstrate comparable accuracy of our solution with classical convolutional neural networks with comparable numbers of trainable parameters.
- Score: 0.5999777817331318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiclass classification is of great interest for various machine learning
applications, for example, it is a common task in computer vision, where one
needs to categorize an image into three or more classes. Here we propose a
quantum machine learning approach based on quantum convolutional neural
networks for solving this problem. The corresponding learning procedure is
implemented via TensorFlowQuantum as a hybrid quantum-classical (variational)
model, where quantum output results are fed to softmax cost function with
subsequent minimization of it via optimization of parameters of quantum
circuit. Our conceptional improvements include a new model for quantum
perceptron and optimized structure of the quantum circuit. We use the proposed
approach to demonstrate the 4-class classification for the case of the MNIST
dataset using eight qubits for data encoding and four acnilla qubits. Our
results demonstrate comparable accuracy of our solution with classical
convolutional neural networks with comparable numbers of trainable parameters.
We expect that our finding provide a new step towards the use of quantum
machine learning for solving practically relevant problems in the NISQ era and
beyond.
Related papers
- Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification [0.0]
We present a hybrid quantum-classical machine learning model for classification tasks, integrating a 4-qubit quantum circuit with a classical neural network.
The model was trained over 20 epochs, achieving a perfect 100% accuracy on the Iris dataset test set on 16 epoch.
This work contributes to the growing body of research on hybrid quantum-classical models and their applicability to real-world datasets.
arXiv Detail & Related papers (2024-10-21T13:15:12Z) - Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
This research explores the integration of quantum computing with classical machine learning for image classification tasks.
We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms.
The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features.
arXiv Detail & Related papers (2024-08-05T22:16:27Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Multi-class quantum classifiers with tensor network circuits for quantum
phase recognition [0.0]
Network-inspired circuits have been proposed as a natural choice for variational quantum eigensolver circuits.
We present numerical experiments on multi-class entanglements based on tree tensor network and multiscale renormalization ansatz circuits.
arXiv Detail & Related papers (2021-10-15T21:55:13Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Quantum Machine Learning for Particle Physics using a Variational
Quantum Classifier [0.0]
We propose a novel hybrid variational quantum classifier that combines the quantum gradient descent method with steepest gradient descent to optimise the parameters of the network.
We find that this algorithm has a better learning outcome than a classical neural network or a quantum machine learning method trained with a non-quantum optimisation method.
arXiv Detail & Related papers (2020-10-14T18:05:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.