論文の概要: KatzBot: Revolutionizing Academic Chatbot for Enhanced Communication
- arxiv url: http://arxiv.org/abs/2410.16385v1
- Date: Mon, 21 Oct 2024 18:01:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:12.500514
- Title: KatzBot: Revolutionizing Academic Chatbot for Enhanced Communication
- Title(参考訳): KatzBot: コミュニケーション強化のためのアカデミックチャットボット
- Authors: Sahil Kumar, Deepa Paikar, Kiran Sai Vutukuri, Haider Ali, Shashidhar Reddy Ainala, Aditya Murli Krishnan, Youshan Zhang,
- Abstract要約: KatzBotは、ドメイン固有の学術データに基づいてトレーニングされた、カスタムLarge Language Model(LLM)である。
オープンソースのLLMよりも優れており、高い精度とドメイン関連性を実現している。
KatzBotはユーザフレンドリーなインターフェースを提供し、現実世界のアプリケーションにおけるユーザの満足度を大幅に向上させる。
- 参考スコア(独自算出の注目度): 6.334523276812192
- License:
- Abstract: Effective communication within universities is crucial for addressing the diverse information needs of students, alumni, and external stakeholders. However, existing chatbot systems often fail to deliver accurate, context-specific responses, resulting in poor user experiences. In this paper, we present KatzBot, an innovative chatbot powered by KatzGPT, a custom Large Language Model (LLM) fine-tuned on domain-specific academic data. KatzGPT is trained on two university-specific datasets: 6,280 sentence-completion pairs and 7,330 question-answer pairs. KatzBot outperforms established existing open source LLMs, achieving higher accuracy and domain relevance. KatzBot offers a user-friendly interface, significantly enhancing user satisfaction in real-world applications. The source code is publicly available at \url{https://github.com/AiAI-99/katzbot}.
- Abstract(参考訳): 大学内の効果的なコミュニケーションは、学生、卒業生、および外部ステークホルダーの多様な情報ニーズに対処するために不可欠である。
しかし、既存のチャットボットシステムでは、正確なコンテキスト固有の応答が得られず、結果としてユーザエクスペリエンスが低下することが多い。
本稿では,Large Language Model (LLM) を利用した革新的なチャットボットであるKatzBotについて述べる。
KatzGPTは6,280の文補完ペアと7,330の質問応答ペアという、2つの大学固有のデータセットでトレーニングされている。
KatzBotは既存のオープンソースLLMよりも優れており、高い精度とドメイン関連性を実現している。
KatzBotはユーザフレンドリーなインターフェースを提供し、現実世界のアプリケーションにおけるユーザの満足度を大幅に向上させる。
ソースコードは \url{https://github.com/AiAI-99/katzbot} で公開されている。
関連論文リスト
- Experiences from Integrating Large Language Model Chatbots into the Classroom [4.449125623758632]
学生に最先端の大規模言語モデル(LLM)チャットボットへの未フィルタリングアクセスを提供する。
あらゆるコースにおいて、LLMの使用の大部分は少数のスーパーユーザーから来ていた。
低使用率の潜在的な理由について議論し、よりカスタマイズされた足場付きLLM体験の必要性を示唆する。
論文 参考訳(メタデータ) (2024-06-07T10:37:14Z) - WildChat: 1M ChatGPT Interaction Logs in the Wild [88.05964311416717]
WildChatは100万件のユーザー・チャットGPT会話のコーパスで、250万回以上のインタラクション・ターンで構成されている。
タイムスタンプによるチャットの書き起こしに加えて、州、国、ハッシュIPアドレスを含む人口統計データでデータセットを豊かにします。
論文 参考訳(メタデータ) (2024-05-02T17:00:02Z) - Measuring and Controlling Instruction (In)Stability in Language Model Dialogs [72.38330196290119]
System-promptingは、言語モデルチャットボットをカスタマイズするツールで、特定の命令に従うことができる。
本稿では,仮説を検証し,セルフチャットによる命令安定性の評価を行うベンチマークを提案する。
我々は8ラウンドの会話で重要な指示ドリフトを明らかにした。
そこで本研究では,2つの強力なベースラインに対して良好に比較可能なsplit-softmaxという軽量な手法を提案する。
論文 参考訳(メタデータ) (2024-02-13T20:10:29Z) - Deep Learning Based Amharic Chatbot for FAQs in Universities [0.0]
本稿では,アムハラ語の質問(FAQ)に頻繁に答えるモデルを提案する。
提案プログラムでは, トークン化, 停止語除去, ステーミングを用いて, アムハラ語入力文の分析と分類を行う。
このモデルはFacebook Messengerに統合され、Herokuサーバに24時間のアクセシビリティとしてデプロイされた。
論文 参考訳(メタデータ) (2024-01-26T18:37:21Z) - A Self-enhancement Approach for Domain-specific Chatbot Training via
Knowledge Mining and Digest [62.63606958140248]
大規模言語モデル(LLM)は、特定のドメインで複雑な知識要求クエリを扱う際に、しばしば困難に直面する。
本稿では、ドメイン固有のテキストソースから関連知識を効果的に抽出し、LLMを強化する新しいアプローチを提案する。
我々は知識マイナー、すなわちLLMinerを訓練し、関連する文書から質問応答対を自律的に抽出する。
論文 参考訳(メタデータ) (2023-11-17T16:09:10Z) - From Words and Exercises to Wellness: Farsi Chatbot for Self-Attachment Technique [1.7592522344393486]
私たちはFarsiでセルフアタッチメント(SAT)を通じてユーザを誘導する音声対応ロボットを開発した。
6000以上の発話のデータセットを収集し、ユーザー感情を12クラスに分類する新しい感情分析モジュールを開発し、精度は92%以上である。
当社のプラットフォームは,ほとんどのユーザ(75%),72%がインタラクションの後に気分が良くなり,74%がSAT Teacherのパフォーマンスに満足していた。
論文 参考訳(メタデータ) (2023-10-13T19:09:31Z) - CheerBots: Chatbots toward Empathy and Emotionusing Reinforcement
Learning [60.348822346249854]
本研究では,複数の共感型チャットボットがユーザの暗黙の感情を理解し,複数の対話のターンに対して共感的に応答する枠組みを提案する。
チャットボットをCheerBotsと呼びます。CheerBotsは検索ベースまたは生成ベースで、深い強化学習によって微調整されます。
共感的態度で反応するため,CheerBotsの学習支援としてシミュレーションエージェントである概念人間モデルを開発し,今後のユーザの感情状態の変化を考慮し,共感を喚起する。
論文 参考訳(メタデータ) (2021-10-08T07:44:47Z) - Put Chatbot into Its Interlocutor's Shoes: New Framework to Learn
Chatbot Responding with Intention [55.77218465471519]
本稿では,チャットボットに人間のような意図を持つための革新的なフレームワークを提案する。
我々のフレームワークには、ガイドロボットと人間の役割を担うインターロケータモデルが含まれていた。
本フレームワークを3つの実験的なセットアップを用いて検討し,4つの異なる指標を用いた誘導ロボットの評価を行い,柔軟性と性能の利点を実証した。
論文 参考訳(メタデータ) (2021-03-30T15:24:37Z) - TruthBot: An Automated Conversational Tool for Intent Learning, Curated
Information Presenting, and Fake News Alerting [12.95006904081387]
TruthBotは、特定のトピックに関する真理(信頼できる、検証された情報)を求めるように設計されている。
特定のトピックに特有の情報を取得し、ファクトチェック情報を取得し、最新のニュースを得るのに役立つ。
TruthBotは2020年6月にデプロイされ、現在運用中である。
論文 参考訳(メタデータ) (2021-01-31T18:23:05Z) - Pchatbot: A Large-Scale Dataset for Personalized Chatbot [49.16746174238548]
本稿では,Weibo と Judicial のフォーラムから収集した2つのサブセットを含む大規模対話データセットである Pchatbot を紹介する。
生データセットを対話システムに適応させるため、匿名化などのプロセスを通じて生データセットを精巧に正規化する。
Pchatbotのスケールは、既存の中国のデータセットよりも大幅に大きく、データ駆動モデルの恩恵を受ける可能性がある。
論文 参考訳(メタデータ) (2020-09-28T12:49:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。