論文の概要: To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning
- arxiv url: http://arxiv.org/abs/2410.16456v1
- Date: Mon, 21 Oct 2024 19:30:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:29:10.562290
- Title: To the Globe (TTG): Towards Language-Driven Guaranteed Travel Planning
- Title(参考訳): グローブ(TTG:To the Globe) : 言語依存型旅行計画に向けて
- Authors: Da JU, Song Jiang, Andrew Cohen, Aaron Foss, Sasha Mitts, Arman Zharmagambetov, Brandon Amos, Xian Li, Justine T Kao, Maryam Fazel-Zarandi, Yuandong Tian,
- Abstract要約: To the Globe(TTG)は、ユーザから自然言語要求を受け取り、それをシンボリックフォームに変換するリアルタイムのデモシステムである。
システム全体の応答に5秒を要し、保証されたイテナリでユーザ要求に応答する。
ユーザによる評価では、TTGは生成した繰り返しで35-40%のネットプロモータースコア(NPS)を一貫して達成する。
- 参考スコア(独自算出の注目度): 54.9340658451129
- License:
- Abstract: Travel planning is a challenging and time-consuming task that aims to find an itinerary which satisfies multiple, interdependent constraints regarding flights, accommodations, attractions, and other travel arrangements. In this paper, we propose To the Globe (TTG), a real-time demo system that takes natural language requests from users, translates it to symbolic form via a fine-tuned Large Language Model, and produces optimal travel itineraries with Mixed Integer Linear Programming solvers. The overall system takes ~5 seconds to reply to the user request with guaranteed itineraries. To train TTG, we develop a synthetic data pipeline that generates user requests, flight and hotel information in symbolic form without human annotations, based on the statistics of real-world datasets, and fine-tune an LLM to translate NL user requests to their symbolic form, which is sent to the symbolic solver to compute optimal itineraries. Our NL-symbolic translation achieves ~91% exact match in a backtranslation metric (i.e., whether the estimated symbolic form of generated natural language matches the groundtruth), and its returned itineraries have a ratio of 0.979 compared to the optimal cost of the ground truth user request. When evaluated by users, TTG achieves consistently high Net Promoter Scores (NPS) of 35-40% on generated itinerary.
- Abstract(参考訳): 旅行計画は、複数の便、宿泊施設、アトラクション、その他の旅行アレンジに関する相互依存的な制約を満たす旅路を見つけることを目的とした、困難で時間を要する作業である。
本稿では,ユーザからの自然言語要求をリアルタイムに受け取り,微調整されたLarge Language Modelを用いてシンボル形式に翻訳し,Mixed Integer Linear Programming solverを用いて最適な旅行イテナリーを生成するTo the Globe (TTG)を提案する。
システム全体の応答に約5秒を要し、保証されたイテナリでユーザ要求に応答する。
TTGをトレーニングするために,実世界のデータセットの統計に基づいて,ユーザ要求,フライト情報,ホテル情報をシンボル形式で生成する合成データパイプラインを開発し,NLユーザ要求をシンボル形式に翻訳し,それをシンボルソルバに送信し,最適なイテレーションを計算する。
我々のNL-シンボリック翻訳は、バックトランスレーション・メトリック(すなわち、生成した自然言語のシンボル形式が基底値と一致するかどうか)において、約91%の正確な一致を達成し、その返却イテナリーは、基底真理ユーザ要求の最適コストと比較して0.979の比を持つ。
ユーザによる評価では、TTGは生成した繰り返しで35-40%のネットプロモータースコア(NPS)を一貫して達成する。
関連論文リスト
- TRIP-PAL: Travel Planning with Guarantees by Combining Large Language Models and Automated Planners [6.378824981027464]
伝統的なアプローチは、与えられた形式言語における問題定式化に依存している。
最近のLarge Language Model (LLM) ベースのアプローチは、言語を使用してユーザリクエストから計画を直接出力する。
LLMと自動プランナの強度を組み合わせたハイブリッド手法TRIP-PALを提案する。
論文 参考訳(メタデータ) (2024-06-14T17:31:16Z) - NATURAL PLAN: Benchmarking LLMs on Natural Language Planning [109.73382347588417]
本稿では,3つのタスク – トリップ計画,ミーティング計画,カレンダースケジューリング – を含む,自然言語の現実的な計画ベンチマークであるNATURAL PLANを紹介する。
我々は、Google Flights、Google Maps、Google Calendarなどのツールからの出力を、モデルに対するコンテキストとして提供することによって、タスクに関する完全な情報を備えたLCMの計画能力に焦点をあてる。
論文 参考訳(メタデータ) (2024-06-06T21:27:35Z) - ITINERA: Integrating Spatial Optimization with Large Language Models for Open-domain Urban Itinerary Planning [17.250579851469695]
オープンドメイン都市イテナリープランニング(OUIP)の新たな課題について紹介する。
OUIPは、自然言語によるユーザ要求から、パーソナライズされた都市反復を生成する。
本稿では,大規模言語モデルと空間最適化を統合したOUIPシステムであるITINERAについて述べる。
論文 参考訳(メタデータ) (2024-02-11T13:30:53Z) - TravelPlanner: A Benchmark for Real-World Planning with Language Agents [63.199454024966506]
我々は,旅行計画に焦点を当てた新しい計画ベンチマークであるTravelPlannerを提案する。
豊富なサンドボックス環境、400万近いデータレコードにアクセスするためのさまざまなツール、計画意図とリファレンスプランを慎重にキュレートした1,225のツールを提供する。
包括的評価では、現在の言語エージェントがそのような複雑な計画タスクを処理できないことが示されており、GPT-4でさえ0.6%の成功率しか達成できない。
論文 参考訳(メタデータ) (2024-02-02T18:39:51Z) - Language and Task Arithmetic with Parameter-Efficient Layers for Zero-Shot Summarization [126.96113831681338]
本稿では,言語やタスク特化パラメータを構成することで,ゼロショットの言語間移動を改善することを提案する。
本手法は,言語とタスクPEFTモジュールを要素演算により構成し,ラベルなしデータと英語ラベル付きデータを活用する。
論文 参考訳(メタデータ) (2023-11-15T20:04:58Z) - Chain-of-Symbol Prompting Elicits Planning in Large Langauge Models [47.210211555783836]
自然言語計画と行動(Natala)という,一連の新しいタスクからなるベンチマークを提案する。
現在、ChatGPTのようなLLMには複雑な計画能力がないことが分かっています。
本稿では,凝縮した記号空間表現を持つ複雑な環境を表現するCoS(Chain-of-Symbol Prompting)を提案する。
論文 参考訳(メタデータ) (2023-05-17T15:07:50Z) - Data-Efficient Learning of Natural Language to Linear Temporal Logic
Translators for Robot Task Specification [6.091096843566857]
本稿では、自然言語コマンドから、人間ラベルの訓練データに制限のある仕様への変換を学習ベースで行う手法を提案する。
これは、人間のラベル付きデータセットを必要とする既存の自然言語から翻訳者への変換とは対照的である。
自然言語コマンドを75%の精度で翻訳できることを示す。
論文 参考訳(メタデータ) (2023-03-09T00:09:58Z) - POIBERT: A Transformer-based Model for the Tour Recommendation Problem [0.3121997724420106]
本稿では,POI 上での BERT 言語モデルを用いて,パーソナライズされたイテレーションを推薦するアルゴリズムである POIBERT を提案する。
提案手法では, 類似観光地からの過去のトラジェクトリに基づいて, POIカテゴリの時間とユーザの嗜好を最適化するPOIのシーケンスを生成することができる。
論文 参考訳(メタデータ) (2022-12-16T12:32:15Z) - Think Global, Act Local: Dual-scale Graph Transformer for
Vision-and-Language Navigation [87.03299519917019]
本稿では,2次元グラフ変換器 (DUET) を提案する。
我々は,グローバルな行動空間における効率的な探索を可能にするために,トポロジカルマップをオンザフライで構築する。
提案手法であるDUETは、目標指向の視覚・言語ナビゲーションベンチマークにおいて最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2022-02-23T19:06:53Z) - User Preferential Tour Recommendation Based on POI-Embedding Methods [0.624399544884021]
POI埋め込み手法を用いてパーソナライズツアーを推薦するアルゴリズムを提案する。
提案アルゴリズムは時間と位置の制約を最適化するpoisのシーケンスを生成する。
予備実験の結果,本アルゴリズムは適切で正確な文を推薦できることがわかった。
論文 参考訳(メタデータ) (2021-03-03T15:18:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。