Forecasting Opioid Incidents for Rapid Actionable Data for Opioid Response in Kentucky
- URL: http://arxiv.org/abs/2410.16500v1
- Date: Mon, 21 Oct 2024 20:45:13 GMT
- Title: Forecasting Opioid Incidents for Rapid Actionable Data for Opioid Response in Kentucky
- Authors: Aaron D. Mullen, Daniel Harris, Peter Rock, Svetla Slavova, Jeffery Talbert, V. K. Cody Bumgardner,
- Abstract summary: We present efforts in the fields of machine learning and time series forecasting to accurately predict counts of future opioid overdose incidents recorded by Emergency Medical Services (EMS) in the state of Kentucky.
Our approach uses county and district level aggregations of EMS opioid overdose encounters and forecasts future counts for each month.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present efforts in the fields of machine learning and time series forecasting to accurately predict counts of future opioid overdose incidents recorded by Emergency Medical Services (EMS) in the state of Kentucky. Forecasts are useful to state government agencies to properly prepare and distribute resources related to opioid overdoses effectively. Our approach uses county and district level aggregations of EMS opioid overdose encounters and forecasts future counts for each month. A variety of additional covariates were tested to determine their impact on the model's performance. Models with different levels of complexity were evaluated to optimize training time and accuracy. Our results show that when special precautions are taken to address data sparsity, useful predictions can be generated with limited error by utilizing yearly trends and covariance with additional data sources.
Related papers
- Large Language Models for Drug Overdose Prediction from Longitudinal Medical Records [1.128171601341153]
Large language models (LLMs) offer opportunity to enhance prediction performance.
In this study, we assess the effectiveness of Open AI's GPT-4o LLM in predicting drug overdose events.
arXiv Detail & Related papers (2025-04-16T05:52:22Z) - High-dimensional point forecast combinations for emergency department demand [0.19348290147402303]
Current work on forecasting emergency department (ED) admissions focuses on disease aggregates or singular disease types.<n>We propose high-dimensional forecast combination schemes to combine a large number of forecasting individual models for forecasting cause-specific ED admissions.<n>We show that the simple forecast combinations yield forecast accuracies of around 3.81%-23.54% across causes.
arXiv Detail & Related papers (2025-01-20T07:39:37Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Multi-Source Conformal Inference Under Distribution Shift [41.701790856201036]
We consider the problem of obtaining distribution-free prediction intervals for a target population, leveraging multiple potentially biased data sources.
We derive the efficient influence functions for the quantiles of unobserved outcomes in the target and source populations.
We propose a data-adaptive strategy to upweight informative data sources for efficiency gain and downweight non-informative data sources for bias reduction.
arXiv Detail & Related papers (2024-05-15T13:33:09Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
Vaccine supply chain optimization can benefit from hierarchical time series forecasting.
Forecasts of different hierarchy levels become incoherent when higher levels do not match the sum of the lower levels forecasts.
We tackle the vaccine sale forecasting problem by modeling sales data from GSK between 2010 and 2021 as a hierarchical time series.
arXiv Detail & Related papers (2023-05-02T14:34:34Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
We address the problem of modeling constrained hospital resources in the midst of the COVID-19 pandemic.
For broad applicability, we focus on the common yet challenging scenario where patient-level data for a region of interest are not available.
We propose an aggregate count explicit-duration hidden Markov model, nicknamed the ACED-HMM, with an interpretable, compact parameterization.
arXiv Detail & Related papers (2021-04-28T15:32:42Z) - Forecasting COVID-19 Counts At A Single Hospital: A Hierarchical
Bayesian Approach [59.318136981032]
We consider the problem of forecasting the daily number of hospitalized COVID-19 patients at a single hospital site.
We develop several candidate hierarchical Bayesian models which directly capture the count nature of data.
We demonstrate our approach on public datasets for 8 hospitals in Massachusetts, U.S.A. and 10 hospitals in the United Kingdom.
arXiv Detail & Related papers (2021-04-14T11:58:54Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
We propose Deep Recurrent Inverse TreatmEnt weighting (DeepRite) for time-varying confounding in longitudinal data.
DeepRite is shown to recover the ground truth from synthetic data, and estimate unbiased treatment effects from real data.
arXiv Detail & Related papers (2020-10-28T15:05:08Z) - Forecasting COVID-19 daily cases using phone call data [0.0]
We propose a simple Multiple Linear Regression model optimised to use call data to forecast the number of daily confirmed cases.
Our proposed approach outperforms ARIMA, ETS and a regression model without call data, evaluated by three point forecast error metrics, one prediction interval and two probabilistic forecast accuracy measures.
arXiv Detail & Related papers (2020-10-05T18:07:07Z) - PECAIQR: A Model for Infectious Disease Applied to the Covid-19 Epidemic [0.0]
Current state of the art predictions of future daily deaths have confidence intervals that are unacceptably wide.
We used US county-level data on daily deaths and population statistics to forecast future deaths.
We generate longer-time horizon predictions over various 1-month windows in the past, forecast how many medical resources will be needed in counties, and evaluate the efficacy of our model in other countries.
arXiv Detail & Related papers (2020-06-17T17:59:55Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.