DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data
- URL: http://arxiv.org/abs/2010.15028v1
- Date: Wed, 28 Oct 2020 15:05:08 GMT
- Title: DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data
- Authors: Yanbo Xu, Cao Xiao, Jimeng Sun
- Abstract summary: We propose Deep Recurrent Inverse TreatmEnt weighting (DeepRite) for time-varying confounding in longitudinal data.
DeepRite is shown to recover the ground truth from synthetic data, and estimate unbiased treatment effects from real data.
- Score: 68.29870617697532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counterfactual prediction is about predicting outcome of the unobserved
situation from the data. For example, given patient is on drug A, what would be
the outcome if she switch to drug B. Most of existing works focus on modeling
counterfactual outcome based on static data. However, many applications have
time-varying confounding effects such as multiple treatments over time. How to
model such time-varying effects from longitudinal observational data? How to
model complex high-dimensional dependency in the data? To address these
challenges, we propose Deep Recurrent Inverse TreatmEnt weighting (DeepRite) by
incorporating recurrent neural networks into two-phase adjustments for the
existence of time-varying confounding in modern longitudinal data. In phase I
cohort reweighting we fit one network for emitting time dependent inverse
probabilities of treatment, use them to generate a pseudo balanced cohort. In
phase II outcome progression, we input the adjusted data to the subsequent
predictive network for making counterfactual predictions. We evaluate DeepRite
on both synthetic data and a real data collected from sepsis patients in the
intensive care units. DeepRite is shown to recover the ground truth from
synthetic data, and estimate unbiased treatment effects from real data that can
be better aligned with the standard guidelines for management of sepsis thanks
to its applicability to create balanced cohorts.
Related papers
- SeqRisk: Transformer-augmented latent variable model for improved survival prediction with longitudinal data [4.1476925904032464]
We propose SeqRisk, a method that combines variational autoencoder (VAE) or longitudinal VAE (LVAE) with a transformer encoder and Cox proportional hazards module for risk prediction.
We demonstrate that SeqRisk performs competitively compared to existing approaches on both simulated and real-world datasets.
arXiv Detail & Related papers (2024-09-19T12:35:25Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Variational Temporal Deconfounder for Individualized Treatment Effect
Estimation from Longitudinal Observational Data [8.347630187110004]
Existing approaches for estimating treatment effects from longitudinal observational data are usually built upon a strong assumption of "unconfoundedness"
We propose the Variational Temporal Deconfounder (VTD), an approach that leverages deep variational embeddings in the longitudinal setting using proxies.
We test our VTD method on both synthetic and real-world clinical data, and the results show that our approach is effective when hidden confounding is the leading bias compared to other existing models.
arXiv Detail & Related papers (2022-07-23T16:43:12Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Deep Bayesian Estimation for Dynamic Treatment Regimes with a Long
Follow-up Time [28.11470886127216]
Causal effect estimation for dynamic treatment regimes (DTRs) contributes to sequential decision making.
We combine outcome regression models with treatment models for high dimensional features using uncensored subjects that are small in sample size.
Also, the developed deep Bayesian models can model uncertainty and output the prediction variance which is essential for the safety-aware applications, such as self-driving cars and medical treatment design.
arXiv Detail & Related papers (2021-09-20T13:21:39Z) - CDSM -- Casual Inference using Deep Bayesian Dynamic Survival Models [3.9169188005935927]
We have developed a causal dynamic survival model (CDSM) that uses the potential outcomes framework with the Bayesian recurrent sub-networks to estimate the difference in survival curves.
Using simulated survival datasets, CDSM has shown good causal effect estimation performance across scenarios of sample dimension, event rate, confounding and overlapping.
arXiv Detail & Related papers (2021-01-26T09:15:49Z) - Estimating Individual Treatment Effects with Time-Varying Confounders [9.784193264717098]
Estimating individual treatment effect (ITE) from observational data is meaningful and practical in healthcare.
Existing work mainly relies on the strong ignorability assumption that no hidden confounders exist.
We propose Deep Sequential Weighting (DSW) for estimating ITE with time-varying confounders.
arXiv Detail & Related papers (2020-08-27T02:21:56Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.