Efficient Neural Network Training via Subset Pretraining
- URL: http://arxiv.org/abs/2410.16523v2
- Date: Tue, 29 Oct 2024 14:18:51 GMT
- Title: Efficient Neural Network Training via Subset Pretraining
- Authors: Jan Spörer, Bernhard Bermeitinger, Tomas Hrycej, Niklas Limacher, Siegfried Handschuh,
- Abstract summary: In training neural networks, it is common practice to use partial gradients computed over batches.
The loss minimum of the training set can be expected to be well-approximated by the minima of its subsets.
experiments have confirmed that results equivalent to conventional training can be reached.
- Score: 5.352839075466439
- License:
- Abstract: In training neural networks, it is common practice to use partial gradients computed over batches, mostly very small subsets of the training set. This approach is motivated by the argument that such a partial gradient is close to the true one, with precision growing only with the square root of the batch size. A theoretical justification is with the help of stochastic approximation theory. However, the conditions for the validity of this theory are not satisfied in the usual learning rate schedules. Batch processing is also difficult to combine with efficient second-order optimization methods. This proposal is based on another hypothesis: the loss minimum of the training set can be expected to be well-approximated by the minima of its subsets. Such subset minima can be computed in a fraction of the time necessary for optimizing over the whole training set. This hypothesis has been tested with the help of the MNIST, CIFAR-10, and CIFAR-100 image classification benchmarks, optionally extended by training data augmentation. The experiments have confirmed that results equivalent to conventional training can be reached. In summary, even small subsets are representative if the overdetermination ratio for the given model parameter set sufficiently exceeds unity. The computing expense can be reduced to a tenth or less.
Related papers
- Just How Flexible are Neural Networks in Practice? [89.80474583606242]
It is widely believed that a neural network can fit a training set containing at least as many samples as it has parameters.
In practice, however, we only find solutions via our training procedure, including the gradient and regularizers, limiting flexibility.
arXiv Detail & Related papers (2024-06-17T12:24:45Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
Longtailed distributions frequently emerge in real-world data, where a large number of minority categories contain a limited number of samples.
Recent investigations have revealed that supervised contrastive learning exhibits promising potential in alleviating the data imbalance.
We propose a novel probabilistic contrastive (ProCo) learning algorithm that estimates the data distribution of the samples from each class in the feature space.
arXiv Detail & Related papers (2024-03-11T13:44:49Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - You Only Need End-to-End Training for Long-Tailed Recognition [8.789819609485225]
Cross-entropy loss tends to produce highly correlated features on imbalanced data.
We propose two novel modules, Block-based Relatively Balanced Batch Sampler (B3RS) and Batch Embedded Training (BET)
Experimental results on the long-tailed classification benchmarks, CIFAR-LT and ImageNet-LT, demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2021-12-11T11:44:09Z) - Simultaneous Training of Partially Masked Neural Networks [67.19481956584465]
We show that it is possible to train neural networks in such a way that a predefined 'core' subnetwork can be split-off from the trained full network with remarkable good performance.
We show that training a Transformer with a low-rank core gives a low-rank model with superior performance than when training the low-rank model alone.
arXiv Detail & Related papers (2021-06-16T15:57:51Z) - Training highly effective connectivities within neural networks with
randomly initialized, fixed weights [4.56877715768796]
We introduce a novel way of training a network by flipping the signs of the weights.
We obtain good results even with weights constant magnitude or even when weights are drawn from highly asymmetric distributions.
arXiv Detail & Related papers (2020-06-30T09:41:18Z) - One Size Fits All: Can We Train One Denoiser for All Noise Levels? [13.46272057205994]
It is often preferred to train one neural network estimator and apply it to all noise levels.
The de facto protocol is to train the estimator with noisy samples whose noise are uniformly distributed.
This paper addresses the sample problem from a minimax risk optimization perspective.
arXiv Detail & Related papers (2020-05-19T17:56:04Z) - TRP: Trained Rank Pruning for Efficient Deep Neural Networks [69.06699632822514]
We propose Trained Rank Pruning (TRP), which alternates between low rank approximation and training.
A nuclear regularization optimized by sub-gradient descent is utilized to further promote low rank in TRP.
The TRP trained network inherently has a low-rank structure, and is approximated with negligible performance loss.
arXiv Detail & Related papers (2020-04-30T03:37:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.