Training highly effective connectivities within neural networks with
randomly initialized, fixed weights
- URL: http://arxiv.org/abs/2006.16627v2
- Date: Tue, 17 Nov 2020 09:55:17 GMT
- Title: Training highly effective connectivities within neural networks with
randomly initialized, fixed weights
- Authors: Cristian Ivan, Razvan Florian
- Abstract summary: We introduce a novel way of training a network by flipping the signs of the weights.
We obtain good results even with weights constant magnitude or even when weights are drawn from highly asymmetric distributions.
- Score: 4.56877715768796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present some novel, straightforward methods for training the connection
graph of a randomly initialized neural network without training the weights.
These methods do not use hyperparameters defining cutoff thresholds and
therefore remove the need for iteratively searching optimal values of such
hyperparameters. We can achieve similar or higher performances than in the case
of training all weights, with a similar computational cost as for standard
training techniques. Besides switching connections on and off, we introduce a
novel way of training a network by flipping the signs of the weights. If we try
to minimize the number of changed connections, by changing less than 10% of the
total it is already possible to reach more than 90% of the accuracy achieved by
standard training. We obtain good results even with weights of constant
magnitude or even when weights are drawn from highly asymmetric distributions.
These results shed light on the over-parameterization of neural networks and on
how they may be reduced to their effective size.
Related papers
- Post-Training Quantization for Re-parameterization via Coarse & Fine
Weight Splitting [13.270381125055275]
We propose a coarse & fine weight splitting (CFWS) method to reduce quantization error of weight.
We develop an improved KL metric to determine optimal quantization scales for activation.
For example, the quantized RepVGG-A1 model exhibits a mere 0.3% accuracy loss.
arXiv Detail & Related papers (2023-12-17T02:31:20Z) - Weight Compander: A Simple Weight Reparameterization for Regularization [5.744133015573047]
We introduce weight compander, a novel effective method to improve generalization of deep neural networks.
We show experimentally that using weight compander in addition to standard regularization methods improves the performance of neural networks.
arXiv Detail & Related papers (2023-06-29T14:52:04Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
Spiking neural networks (SNNs) with event-based computation are promising brain-inspired models for energy-efficient applications on neuromorphic hardware.
We study spike-based implicit differentiation on the equilibrium state (SPIDE) that extends the recently proposed training method.
arXiv Detail & Related papers (2023-02-01T04:22:59Z) - Bit-wise Training of Neural Network Weights [4.56877715768796]
We introduce an algorithm where the individual bits representing the weights of a neural network are learned.
This method allows training weights with integer values on arbitrary bit-depths and naturally uncovers sparse networks.
We show better results than the standard training technique with fully connected networks and similar performance as compared to standard training for convolutional and residual networks.
arXiv Detail & Related papers (2022-02-19T10:46:54Z) - FreeTickets: Accurate, Robust and Efficient Deep Ensemble by Training
with Dynamic Sparsity [74.58777701536668]
We introduce the FreeTickets concept, which can boost the performance of sparse convolutional neural networks over their dense network equivalents by a large margin.
We propose two novel efficient ensemble methods with dynamic sparsity, which yield in one shot many diverse and accurate tickets "for free" during the sparse training process.
arXiv Detail & Related papers (2021-06-28T10:48:20Z) - Low-Precision Training in Logarithmic Number System using Multiplicative
Weight Update [49.948082497688404]
Training large-scale deep neural networks (DNNs) currently requires a significant amount of energy, leading to serious environmental impacts.
One promising approach to reduce the energy costs is representing DNNs with low-precision numbers.
We jointly design a lowprecision training framework involving a logarithmic number system (LNS) and a multiplicative weight update training method, termed LNS-Madam.
arXiv Detail & Related papers (2021-06-26T00:32:17Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Training Sparse Neural Networks using Compressed Sensing [13.84396596420605]
We develop and test a novel method based on compressed sensing which combines the pruning and training into a single step.
Specifically, we utilize an adaptively weighted $ell1$ penalty on the weights during training, which we combine with a generalization of the regularized dual averaging (RDA) algorithm in order to train sparse neural networks.
arXiv Detail & Related papers (2020-08-21T19:35:54Z) - Neural networks with late-phase weights [66.72777753269658]
We show that the solutions found by SGD can be further improved by ensembling a subset of the weights in late stages of learning.
At the end of learning, we obtain back a single model by taking a spatial average in weight space.
arXiv Detail & Related papers (2020-07-25T13:23:37Z) - Compressive sensing with un-trained neural networks: Gradient descent
finds the smoothest approximation [60.80172153614544]
Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration.
We show that an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements.
arXiv Detail & Related papers (2020-05-07T15:57:25Z) - Train-by-Reconnect: Decoupling Locations of Weights from their Values [6.09170287691728]
We show that untrained deep neural networks (DNNs) are different from trained ones.
We propose a novel method named Lookahead Permutation (LaPerm) to train DNNs by reconnecting the weights.
When the initial weights share a single value, our method finds weight neural network with far better-than-chance accuracy.
arXiv Detail & Related papers (2020-03-05T12:40:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.