Insights and Current Gaps in Open-Source LLM Vulnerability Scanners: A Comparative Analysis
- URL: http://arxiv.org/abs/2410.16527v3
- Date: Sat, 16 Nov 2024 07:48:19 GMT
- Title: Insights and Current Gaps in Open-Source LLM Vulnerability Scanners: A Comparative Analysis
- Authors: Jonathan Brokman, Omer Hofman, Oren Rachmil, Inderjeet Singh, Vikas Pahuja, Rathina Sabapathy Aishvariya Priya, Amit Giloni, Roman Vainshtein, Hisashi Kojima,
- Abstract summary: This report presents a comparative analysis of open-source vulnerability scanners for conversational large language models (LLMs)
Our study evaluates prominent scanners - Garak, Giskard, PyRIT, and CyberSecEval - that adapt red-teaming practices to expose vulnerabilities.
- Score: 1.5149711185416004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report presents a comparative analysis of open-source vulnerability scanners for conversational large language models (LLMs). As LLMs become integral to various applications, they also present potential attack surfaces, exposed to security risks such as information leakage and jailbreak attacks. Our study evaluates prominent scanners - Garak, Giskard, PyRIT, and CyberSecEval - that adapt red-teaming practices to expose these vulnerabilities. We detail the distinctive features and practical use of these scanners, outline unifying principles of their design and perform quantitative evaluations to compare them. These evaluations uncover significant reliability issues in detecting successful attacks, highlighting a fundamental gap for future development. Additionally, we contribute a preliminary labelled dataset, which serves as an initial step to bridge this gap. Based on the above, we provide strategic recommendations to assist organizations choose the most suitable scanner for their red-teaming needs, accounting for customizability, test suite comprehensiveness, and industry-specific use cases.
Related papers
- A Systematic Literature Review on Detecting Software Vulnerabilities with Large Language Models [2.518519330408713]
Large Language Models (LLMs) in software engineering have sparked interest in their use for software vulnerability detection.<n>The rapid development of this field has resulted in a fragmented research landscape.<n>This fragmentation makes it difficult to obtain a clear overview of the state-of-the-art or compare and categorize studies meaningfully.
arXiv Detail & Related papers (2025-07-30T13:17:16Z) - Paper Summary Attack: Jailbreaking LLMs through LLM Safety Papers [61.57691030102618]
We propose a novel jailbreaking method, Paper Summary Attack (llmnamePSA)<n>It synthesizes content from either attack-focused or defense-focused LLM safety paper to construct an adversarial prompt template.<n>Experiments show significant vulnerabilities not only in base LLMs, but also in state-of-the-art reasoning model like Deepseek-R1.
arXiv Detail & Related papers (2025-07-17T18:33:50Z) - DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective [59.66984417026933]
We introduce a novel taxonomy, classifying existing methods based on their reliance on internal features (IF) (inherent to the data) versus external features (EF) (artificially introduced for auditing)<n>We formulate two primary attack types: evasion attacks, designed to conceal the use of a dataset, and forgery attacks, intending to falsely implicate an unused dataset.<n>Building on the understanding of existing methods and attack objectives, we further propose systematic attack strategies: decoupling, removal, and detection for evasion; adversarial example-based methods for forgery.<n>Our benchmark, DATABench, comprises 17 evasion attacks, 5 forgery attacks, and 9
arXiv Detail & Related papers (2025-07-08T03:07:15Z) - LLM-Safety Evaluations Lack Robustness [58.334290876531036]
We argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of noise.
We propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers.
arXiv Detail & Related papers (2025-03-04T12:55:07Z) - Adversarial Training for Defense Against Label Poisoning Attacks [53.893792844055106]
Label poisoning attacks pose significant risks to machine learning models.
We propose a novel adversarial training defense strategy based on support vector machines (SVMs) to counter these threats.
Our approach accommodates various model architectures and employs a projected gradient descent algorithm with kernel SVMs for adversarial training.
arXiv Detail & Related papers (2025-02-24T13:03:19Z) - LLMs in Software Security: A Survey of Vulnerability Detection Techniques and Insights [12.424610893030353]
Large Language Models (LLMs) are emerging as transformative tools for software vulnerability detection.
This paper provides a detailed survey of LLMs in vulnerability detection.
We address challenges such as cross-language vulnerability detection, multimodal data integration, and repository-level analysis.
arXiv Detail & Related papers (2025-02-10T21:33:38Z) - Boosting Cybersecurity Vulnerability Scanning based on LLM-supported Static Application Security Testing [5.644999288757871]
Large Language Models (LLMs) have demonstrated powerful code analysis capabilities, but their static training data and privacy risks limit their effectiveness.
We propose LSAST, a novel approach that integrates LLMs with SAST scanners to enhance vulnerability detection.
We set a new benchmark for static vulnerability analysis, offering a robust, privacy-conscious solution.
arXiv Detail & Related papers (2024-09-24T04:42:43Z) - Outside the Comfort Zone: Analysing LLM Capabilities in Software Vulnerability Detection [9.652886240532741]
This paper thoroughly analyses large language models' capabilities in detecting vulnerabilities within source code.
We evaluate the performance of six open-source models that are specifically trained for vulnerability detection against six general-purpose LLMs.
arXiv Detail & Related papers (2024-08-29T10:00:57Z) - Investigating Coverage Criteria in Large Language Models: An In-Depth Study Through Jailbreak Attacks [10.909463767558023]
We propose an innovative approach for the real-time detection of jailbreak attacks by utilizing neural activation features.
Our method holds promise for future systems integrating LLMs, offering robust real-time detection capabilities.
arXiv Detail & Related papers (2024-08-27T17:14:21Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
Anonymizing text that contains sensitive information is crucial for a wide range of applications.<n>Existing techniques face the emerging challenges of the re-identification ability of large language models.<n>We propose a framework composed of three key components: a privacy evaluator, a utility evaluator, and an optimization component.
arXiv Detail & Related papers (2024-07-16T14:28:56Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG) models enhance Large Language Models (LLMs)
In this paper, we demonstrate a security threat where adversaries can exploit the openness of these knowledge bases.
arXiv Detail & Related papers (2024-06-26T05:36:23Z) - Towards Explainable Vulnerability Detection with Large Language Models [17.96542494363619]
Software vulnerabilities pose significant risks to the security and integrity of software systems.
The advent of large language models (LLMs) has introduced transformative potential due to their advanced generative capabilities.
In this paper, we propose LLMVulExp, an automated framework designed to specialize LLMs for the dual tasks of vulnerability detection and explanation.
arXiv Detail & Related papers (2024-06-14T04:01:25Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models [79.0183835295533]
We introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities.
Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content.
We propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings.
arXiv Detail & Related papers (2023-12-21T01:08:39Z) - How Far Have We Gone in Vulnerability Detection Using Large Language
Models [15.09461331135668]
We introduce a comprehensive vulnerability benchmark VulBench.
This benchmark aggregates high-quality data from a wide range of CTF challenges and real-world applications.
We find that several LLMs outperform traditional deep learning approaches in vulnerability detection.
arXiv Detail & Related papers (2023-11-21T08:20:39Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
The ability to detect LLMs-generated content has become of paramount importance.
We aim to provide a detailed overview of existing detection strategies and benchmarks.
We also posit the necessity for a multi-faceted approach to defend against various attacks.
arXiv Detail & Related papers (2023-10-24T09:10:26Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT, Automated Safety Scenario Red Teaming, consists of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection.
We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance.
We find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings.
arXiv Detail & Related papers (2023-10-14T17:10:28Z) - Robust Recommender System: A Survey and Future Directions [58.87305602959857]
We first present a taxonomy to organize current techniques for withstanding malicious attacks and natural noise.
We then explore state-of-the-art methods in each category, including fraudster detection, adversarial training, certifiable robust training for defending against malicious attacks.
We discuss robustness across varying recommendation scenarios and its interplay with other properties like accuracy, interpretability, privacy, and fairness.
arXiv Detail & Related papers (2023-09-05T08:58:46Z) - Vulnerability Clustering and other Machine Learning Applications of
Semantic Vulnerability Embeddings [23.143031911859847]
We investigated different types of semantic vulnerability embeddings based on natural language processing (NLP) techniques.
We also evaluated their use as a foundation for machine learning applications that can support cyber-security researchers and analysts.
The particular applications we explored and briefly summarize are clustering, classification, and visualization.
arXiv Detail & Related papers (2023-08-23T21:39:48Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
We propose a detection strategy to highlight adversarial support sets.
We make use of feature preserving autoencoder filtering and also the concept of self-similarity of a support set to perform this detection.
Our method is attack-agnostic and also the first to explore detection for few-shot classifiers to the best of our knowledge.
arXiv Detail & Related papers (2020-12-09T14:13:41Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
Despite great potential, machine learning in security is prone to subtle pitfalls that undermine its performance.
We identify common pitfalls in the design, implementation, and evaluation of learning-based security systems.
We propose actionable recommendations to support researchers in avoiding or mitigating the pitfalls where possible.
arXiv Detail & Related papers (2020-10-19T13:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.