Robust Recommender System: A Survey and Future Directions
- URL: http://arxiv.org/abs/2309.02057v2
- Date: Tue, 01 Apr 2025 07:33:46 GMT
- Title: Robust Recommender System: A Survey and Future Directions
- Authors: Kaike Zhang, Qi Cao, Fei Sun, Yunfan Wu, Shuchang Tao, Huawei Shen, Xueqi Cheng,
- Abstract summary: We first present a taxonomy to organize current techniques for withstanding malicious attacks and natural noise.<n>We then explore state-of-the-art methods in each category, including fraudster detection, adversarial training, certifiable robust training for defending against malicious attacks.<n>We discuss robustness across varying recommendation scenarios and its interplay with other properties like accuracy, interpretability, privacy, and fairness.
- Score: 58.87305602959857
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid growth of information, recommender systems have become integral for providing personalized suggestions and overcoming information overload. However, their practical deployment often encounters ``dirty'' data, where noise or malicious information can lead to abnormal recommendations. Research on improving recommender systems' robustness against such dirty data has thus gained significant attention. This survey provides a comprehensive review of recent work on recommender systems' robustness. We first present a taxonomy to organize current techniques for withstanding malicious attacks and natural noise. We then explore state-of-the-art methods in each category, including fraudster detection, adversarial training, certifiable robust training for defending against malicious attacks, and regularization, purification, self-supervised learning for defending against malicious attacks. Additionally, we summarize evaluation metrics and commonly used datasets for assessing robustness. We discuss robustness across varying recommendation scenarios and its interplay with other properties like accuracy, interpretability, privacy, and fairness. Finally, we delve into open issues and future research directions in this emerging field. Our goal is to provide readers with a comprehensive understanding of robust recommender systems and to identify key pathways for future research and development. To facilitate ongoing exploration, we maintain a continuously updated GitHub repository with related research: https://github.com/Kaike-Zhang/Robust-Recommender-System.
Related papers
- Towards Robust Recommendation: A Review and an Adversarial Robustness Evaluation Library [27.50051402580845]
We provide a comprehensive overview of the robustness of recommender systems.
In this survey, we categorize the robustness of recommender systems into adversarial robustness and non-adversarial robustness.
We discuss the current challenges in the field of recommender system robustness and potential future research directions.
arXiv Detail & Related papers (2024-04-27T09:44:56Z) - Optimal Zero-Shot Detector for Multi-Armed Attacks [30.906457338347447]
This paper explores a scenario in which a malicious actor employs a multi-armed attack strategy to manipulate data samples.
Our central objective is to protect the data by detecting any alterations to the input.
We derive an innovative information-theoretic defense approach that optimally aggregates the decisions made by these detectors.
arXiv Detail & Related papers (2024-02-24T13:08:39Z) - Impression-Aware Recommender Systems [53.48892326556546]
We present a systematic literature review on recommender systems using impressions.<n>We define a theoretical framework to delimit recommender systems using impressions and a novel paradigm for personalized recommendations, called impression-aware recommender systems.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - RGRecSys: A Toolkit for Robustness Evaluation of Recommender Systems [100.54655931138444]
We propose a more holistic view of robustness for recommender systems that encompasses multiple dimensions.
We present a robustness evaluation toolkit, Robustness Gym for RecSys, that allows us to quickly and uniformly evaluate the robustness of recommender system models.
arXiv Detail & Related papers (2022-01-12T10:32:53Z) - Recommending with Recommendations [1.1602089225841632]
Recommendation systems often draw upon sensitive user information in making predictions.
We show how to address this deficiency by basing a service's recommendation engine upon recommendations from other existing services.
In our setting, the user's (potentially sensitive) information belongs to a high-dimensional latent space.
arXiv Detail & Related papers (2021-12-02T04:30:15Z) - PipAttack: Poisoning Federated Recommender Systems forManipulating Item
Promotion [58.870444954499014]
A common practice is to subsume recommender systems under the decentralized federated learning paradigm.
We present a systematic approach to backdooring federated recommender systems for targeted item promotion.
arXiv Detail & Related papers (2021-10-21T06:48:35Z) - Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect [89.91745908462417]
We show the benefits of pre-training to recommender systems through experiments.
We discuss several promising directions for future research for recommender systems with pre-training.
arXiv Detail & Related papers (2020-09-19T13:06:27Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
We conduct a systematical survey of knowledge graph-based recommender systems.
We focus on how the papers utilize the knowledge graph for accurate and explainable recommendation.
We introduce datasets used in these works.
arXiv Detail & Related papers (2020-02-28T02:26:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.