SoK: Dataset Copyright Auditing in Machine Learning Systems
- URL: http://arxiv.org/abs/2410.16618v1
- Date: Tue, 22 Oct 2024 02:06:38 GMT
- Title: SoK: Dataset Copyright Auditing in Machine Learning Systems
- Authors: Linkang Du, Xuanru Zhou, Min Chen, Chusong Zhang, Zhou Su, Peng Cheng, Jiming Chen, Zhikun Zhang,
- Abstract summary: This paper examines the current dataset copyright auditing tools, examining their effectiveness and limitations.
We categorize dataset copyright auditing research into two prominent strands: intrusive methods and non-intrusive methods.
To summarize our results, we offer detailed reference tables, highlight key points, and pinpoint unresolved issues in the current literature.
- Score: 23.00196984807359
- License:
- Abstract: As the implementation of machine learning (ML) systems becomes more widespread, especially with the introduction of larger ML models, we perceive a spring demand for massive data. However, it inevitably causes infringement and misuse problems with the data, such as using unauthorized online artworks or face images to train ML models. To address this problem, many efforts have been made to audit the copyright of the model training dataset. However, existing solutions vary in auditing assumptions and capabilities, making it difficult to compare their strengths and weaknesses. In addition, robustness evaluations usually consider only part of the ML pipeline and hardly reflect the performance of algorithms in real-world ML applications. Thus, it is essential to take a practical deployment perspective on the current dataset copyright auditing tools, examining their effectiveness and limitations. Concretely, we categorize dataset copyright auditing research into two prominent strands: intrusive methods and non-intrusive methods, depending on whether they require modifications to the original dataset. Then, we break down the intrusive methods into different watermark injection options and examine the non-intrusive methods using various fingerprints. To summarize our results, we offer detailed reference tables, highlight key points, and pinpoint unresolved issues in the current literature. By combining the pipeline in ML systems and analyzing previous studies, we highlight several future directions to make auditing tools more suitable for real-world copyright protection requirements.
Related papers
- CAP: Detecting Unauthorized Data Usage in Generative Models via Prompt Generation [1.6141139250981018]
Copyright Audit via Prompts generation (CAP) is a framework for automatically testing whether an ML model has been trained with unauthorized data.
Specifically, we devise an approach to generate suitable keys inducing the model to reveal copyrighted contents.
To prove its effectiveness, we conducted an extensive evaluation campaign on measurements collected in four IoT scenarios.
arXiv Detail & Related papers (2024-10-08T08:49:41Z) - Evaluating Copyright Takedown Methods for Language Models [100.38129820325497]
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material.
This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs.
We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches.
arXiv Detail & Related papers (2024-06-26T18:09:46Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Don't Push the Button! Exploring Data Leakage Risks in Machine Learning and Transfer Learning [0.0]
This paper addresses a critical issue in Machine Learning (ML) where unintended information contaminates the training data, impacting model performance evaluation.
The discrepancy between evaluated and actual performance on new data is a significant concern.
It explores the connection between data leakage and the specific task being addressed, investigates its occurrence in Transfer Learning, and compares standard inductive ML with transductive ML frameworks.
arXiv Detail & Related papers (2024-01-24T20:30:52Z) - Learn to Unlearn: A Survey on Machine Unlearning [29.077334665555316]
This article presents a review of recent machine unlearning techniques, verification mechanisms, and potential attacks.
We highlight emerging challenges and prospective research directions.
We aim for this paper to provide valuable resources for integrating privacy, equity, andresilience into ML systems.
arXiv Detail & Related papers (2023-05-12T14:28:02Z) - Review on the Feasibility of Adversarial Evasion Attacks and Defenses
for Network Intrusion Detection Systems [0.7829352305480285]
Recent research raises many concerns in the cybersecurity field.
An increasing number of researchers are studying the feasibility of such attacks on security systems based on machine learning algorithms.
arXiv Detail & Related papers (2023-03-13T11:00:05Z) - A Survey of Machine Unlearning [56.017968863854186]
Recent regulations now require that, on request, private information about a user must be removed from computer systems.
ML models often remember' the old data.
Recent works on machine unlearning have not been able to completely solve the problem.
arXiv Detail & Related papers (2022-09-06T08:51:53Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.