CAP: Detecting Unauthorized Data Usage in Generative Models via Prompt Generation
- URL: http://arxiv.org/abs/2410.05819v1
- Date: Tue, 8 Oct 2024 08:49:41 GMT
- Title: CAP: Detecting Unauthorized Data Usage in Generative Models via Prompt Generation
- Authors: Daniela Gallo, Angelica Liguori, Ettore Ritacco, Luca Caviglione, Fabrizio Durante, Giuseppe Manco,
- Abstract summary: Copyright Audit via Prompts generation (CAP) is a framework for automatically testing whether an ML model has been trained with unauthorized data.
Specifically, we devise an approach to generate suitable keys inducing the model to reveal copyrighted contents.
To prove its effectiveness, we conducted an extensive evaluation campaign on measurements collected in four IoT scenarios.
- Score: 1.6141139250981018
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: To achieve accurate and unbiased predictions, Machine Learning (ML) models rely on large, heterogeneous, and high-quality datasets. However, this could raise ethical and legal concerns regarding copyright and authorization aspects, especially when information is gathered from the Internet. With the rise of generative models, being able to track data has become of particular importance, especially since they may (un)intentionally replicate copyrighted contents. Therefore, this work proposes Copyright Audit via Prompts generation (CAP), a framework for automatically testing whether an ML model has been trained with unauthorized data. Specifically, we devise an approach to generate suitable keys inducing the model to reveal copyrighted contents. To prove its effectiveness, we conducted an extensive evaluation campaign on measurements collected in four IoT scenarios. The obtained results showcase the effectiveness of CAP, when used against both realistic and synthetic datasets.
Related papers
- SoK: Dataset Copyright Auditing in Machine Learning Systems [23.00196984807359]
This paper examines the current dataset copyright auditing tools, examining their effectiveness and limitations.
We categorize dataset copyright auditing research into two prominent strands: intrusive methods and non-intrusive methods.
To summarize our results, we offer detailed reference tables, highlight key points, and pinpoint unresolved issues in the current literature.
arXiv Detail & Related papers (2024-10-22T02:06:38Z) - Evaluating Copyright Takedown Methods for Language Models [100.38129820325497]
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material.
This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs.
We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches.
arXiv Detail & Related papers (2024-06-26T18:09:46Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
We introduce a novel approach, EnTruth, which Enhances Traceability of unauthorized dataset usage.
By strategically incorporating the template memorization, EnTruth can trigger the specific behavior in unauthorized models as the evidence of infringement.
Our method is the first to investigate the positive application of memorization and use it for copyright protection, which turns a curse into a blessing.
arXiv Detail & Related papers (2024-06-20T02:02:44Z) - Detecting Generative Parroting through Overfitting Masked Autoencoders [2.6966307157568425]
Our research presents a novel approach to tackle this issue by employing an overfitted Masked Autoencoder (MAE)
We establish a detection threshold based on the mean loss across the training dataset, allowing for the precise identification of parroted content in modified datasets.
Preliminary evaluations demonstrate promising results, suggesting our method's potential to ensure ethical use and enhance the legal compliance of generative models.
arXiv Detail & Related papers (2024-03-27T23:10:33Z) - Generative Models are Self-Watermarked: Declaring Model Authentication
through Re-Generation [17.88043926057354]
verifying data ownership poses formidable challenges, particularly in cases of unauthorized reuse of generated data.
Our work is dedicated to detecting data reuse from even an individual sample.
We propose an explainable verification procedure that attributes data ownership through re-generation, and further amplifies these fingerprints in the generative models through iterative data re-generation.
arXiv Detail & Related papers (2024-02-23T10:48:21Z) - A Dataset and Benchmark for Copyright Infringement Unlearning from Text-to-Image Diffusion Models [52.49582606341111]
Copyright law confers creators the exclusive rights to reproduce, distribute, and monetize their creative works.
Recent progress in text-to-image generation has introduced formidable challenges to copyright enforcement.
We introduce a novel pipeline that harmonizes CLIP, ChatGPT, and diffusion models to curate a dataset.
arXiv Detail & Related papers (2024-01-04T11:14:01Z) - Digger: Detecting Copyright Content Mis-usage in Large Language Model
Training [23.99093718956372]
We introduce a framework designed to detect and assess the presence of content from potentially copyrighted books within the training datasets of Large Language Models (LLMs)
This framework also provides a confidence estimation for the likelihood of each content sample's inclusion.
arXiv Detail & Related papers (2024-01-01T06:04:52Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
We argue for a realistic MIA setting that assumes the attacker has some knowledge of the underlying data distribution.
We propose DOMIAS, a density-based MIA model that aims to infer membership by targeting local overfitting of the generative model.
arXiv Detail & Related papers (2023-02-24T11:27:39Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
This paper presents CARLA-GeAR, a tool for the automatic generation of synthetic datasets for evaluating the robustness of neural models against physical adversarial patches.
The tool is built on the CARLA simulator, using its Python API, and allows the generation of datasets for several vision tasks in the context of autonomous driving.
The paper presents an experimental study to evaluate the performance of some defense methods against such attacks, showing how the datasets generated with CARLA-GeAR might be used in future work as a benchmark for adversarial defense in the real world.
arXiv Detail & Related papers (2022-06-09T09:17:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.