Benchmarking Multi-Scene Fire and Smoke Detection
- URL: http://arxiv.org/abs/2410.16631v1
- Date: Tue, 22 Oct 2024 02:19:23 GMT
- Title: Benchmarking Multi-Scene Fire and Smoke Detection
- Authors: Xiaoyi Han, Nan Pu, Zunlei Feng, Yijun Bei, Qifei Zhang, Lechao Cheng, Liang Xue,
- Abstract summary: Current irregularities in existing public Fire and Smoke Detection (FSD) datasets have become a bottleneck in the advancement of FSD technology.
We aim to establish a standardized, realistic, unified, and efficient FSD research platform that mirrors real-life scenes closely.
- Score: 15.091410770385812
- License:
- Abstract: The current irregularities in existing public Fire and Smoke Detection (FSD) datasets have become a bottleneck in the advancement of FSD technology. Upon in-depth analysis, we identify the core issue as the lack of standardized dataset construction, uniform evaluation systems, and clear performance benchmarks. To address this issue and drive innovation in FSD technology, we systematically gather diverse resources from public sources to create a more comprehensive and refined FSD benchmark. Additionally, recognizing the inadequate coverage of existing dataset scenes, we strategically expand scenes, relabel, and standardize existing public FSD datasets to ensure accuracy and consistency. We aim to establish a standardized, realistic, unified, and efficient FSD research platform that mirrors real-life scenes closely. Through our efforts, we aim to provide robust support for the breakthrough and development of FSD technology. The project is available at \href{https://xiaoyihan6.github.io/FSD/}{https://xiaoyihan6.github.io/FSD/}.
Related papers
- Fire and Smoke Detection with Burning Intensity Representation [14.738038604117364]
An effective Fire and Smoke Detection (FSD) and analysis system is of paramount importance due to the destructive potential of fire disasters.
Many existing FSD methods directly employ generic object detection techniques without considering the transparency of fire and smoke.
A new Attentive Fire and Smoke Detection Model (a-FSDM) is proposed to address this issue.
arXiv Detail & Related papers (2024-10-22T02:41:37Z) - Towards Scenario- and Capability-Driven Dataset Development and Evaluation: An Approach in the Context of Mapless Automated Driving [0.0]
This paper focuses on the process of dataset development for environment perception in automated driving.
We propose a scenario- and capability-based approach to dataset development.
Applying this methodology to a broad range of existing lane detection datasets, we identify significant limitations in current datasets.
arXiv Detail & Related papers (2024-04-30T15:52:49Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL) aims to train high-quality models in collaboration with distributed clients while not uploading their local data.
There is still a considerable gap between the flourishing FL research and real-world scenarios, mainly caused by the characteristics of heterogeneous devices and its scales.
We propose an efficient and scalable prototyping system for real-world cross-device FL, FS-Real.
arXiv Detail & Related papers (2023-03-23T15:37:17Z) - Fully Self-Supervised Depth Estimation from Defocus Clue [79.63579768496159]
We propose a self-supervised framework that estimates depth purely from a sparse focal stack.
We show that our framework circumvents the needs for the depth and AIF image ground-truth, and receives superior predictions.
arXiv Detail & Related papers (2023-03-19T19:59:48Z) - LaMAR: Benchmarking Localization and Mapping for Augmented Reality [80.23361950062302]
We introduce LaMAR, a new benchmark with a comprehensive capture and GT pipeline that co-registers realistic trajectories and sensor streams captured by heterogeneous AR devices.
We publish a benchmark dataset of diverse and large-scale scenes recorded with head-mounted and hand-held AR devices.
arXiv Detail & Related papers (2022-10-19T17:58:17Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerf is a community-led benchmark suite for evaluating ML datasets and data-centric algorithms.
We provide an open, online platform with multiple rounds of challenges to support this iterative development.
The benchmarks, online evaluation platform, and baseline implementations are open source.
arXiv Detail & Related papers (2022-07-20T17:47:54Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Feature Space Singularity for Out-of-Distribution Detection [12.889477280195079]
Out-of-Distribution (OoD) detection is important for building safe artificial intelligence systems.
We propose a simple yet effective algorithm based on a novel observation.
We demonstrate that our algorithm achieves state-of-the-art performance on various OoD detection benchmarks.
arXiv Detail & Related papers (2020-11-30T09:47:20Z) - ASFD: Automatic and Scalable Face Detector [129.82350993748258]
We propose a novel Automatic and Scalable Face Detector (ASFD)
ASFD is based on a combination of neural architecture search techniques as well as a new loss design.
Our ASFD-D6 outperforms the prior strong competitors, and our lightweight ASFD-D0 runs at more than 120 FPS with Mobilenet for VGA-resolution images.
arXiv Detail & Related papers (2020-03-25T06:00:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.