論文の概要: Memory-Efficient Large Language Models for Program Repair with Semantic-Guided Patch Generation
- arxiv url: http://arxiv.org/abs/2410.16655v2
- Date: Fri, 17 Oct 2025 02:43:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-20 13:49:08.509231
- Title: Memory-Efficient Large Language Models for Program Repair with Semantic-Guided Patch Generation
- Title(参考訳): セマンティック型パッチ生成によるプログラム修復のためのメモリ効率の良い大言語モデル
- Authors: Thanh Le-Cong, Bach Le, Toby Murray,
- Abstract要約: FLAMESは、修復効率とメモリ効率を向上させるためにセマンティック誘導パッチ生成を使用する。
FLAMESはLDMベースのAPRに比べてメモリ消費を最大83%削減する。
FLAMESはDefects4Jの133のバグを正しく修正し、最高のベースラインよりも10のバグを修正します。
- 参考スコア(独自算出の注目度): 6.801752060058508
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we first show that increases in beam size, even for small-sized LLMs (1B-7B params), require extensive GPU usage, leading to up to 80% of recurring crashes due to memory overloads in LLM-based APR. Seemingly simple solutions to reduce memory consumption are (1) to quantize LLM models, i.e., converting the weights of an LLM from high-precision values to lower-precision ones, and (2) to make beam search sequential, i.e., forwarding each beam through the model sequentially and then concatenating them back into a single output. However, we show that these approaches still do not work via both theoretical analysis and experiments. To address this, we introduce FLAMES, a novel LLM-based APR technique that employs semantic-guided patch generation to enhance repair effectiveness and memory efficiency. Unlike conventional methods that rely on beam search, FLAMES utilizes greedy decoding to enhance memory efficiency while steering the search towards more potentially good repair candidates via a semantic-guided best-first search algorithm. At each decoding step, FLAMES uses semantic feedback from test validation, such as the number of passing and failing test cases, to select the most promising token to explore further. Our empirical evaluation on Defects4J shows thatFLAMES substantially reduces memory consumption by up to 83% compared to LLM-based APR without compromising time efficiency. Moreover, FLAMES correctly fixes 133 bugs on Defects4J, fixing 10 bugs more than the best baseline. Additionally, these improvements also generalize to the HumanEval-Java and TransformedD4J datasets, where FLAMES generates 12% and 36.5% more correct patches, respectively, than the best baseline.
- Abstract(参考訳): 本稿では,小型LLM (1B-7B params) であってもビームサイズの増加はGPUの広範囲な使用を必要とすることを示し,LLMベースのAPRにおけるメモリ過負荷によるクラッシュの最大80%を発生させることを示した。
メモリ消費を減らすための単純な解決策は、(1)LLMモデルの定量化、すなわち、LLMの重みを高精度な値から低精度なものに変換すること、(2)ビームサーチを逐次的に、すなわち各ビームを連続的にモデルを通して転送し、それらを1つの出力にまとめることである。
しかし、これらの手法は理論解析と実験の両方を通しては機能しない。
そこで本研究では, セマンティックガイドを用いたパッチ生成技術であるFLAMESを導入し, 補修効率とメモリ効率を向上させる。
ビームサーチに依存する従来の方法とは異なり、FLAMESは、セマンティック誘導ベストファーストサーチアルゴリズムを用いて、より優れた修復候補に向けて探索を操りながら、メモリ効率を向上させるためにグレディデコードを利用する。
各デコーディングステップにおいて、FLAMESはテスト検証からのセマンティックフィードバック(パス数やフェールテストケースの数など)を使用して、さらなる探索を行う上で最も有望なトークンを選択する。
The empirical evaluation on Defects4J shows thatFLAMES significantly reduce memory consumption than LLM-based APR without Comppromising time efficiency。
さらに、FLAMESはDefects4Jの133のバグを正しく修正し、最高のベースラインよりも10のバグを修正した。
さらに、これらの改善はHumanEval-JavaとTransformedD4Jデータセットにも一般化され、FLAMESは最高のベースラインよりもそれぞれ12%と36.5%の正確なパッチを生成する。
関連論文リスト
- The Art of Repair: Optimizing Iterative Program Repair with Instruction-Tuned Models [48.073219761367184]
複数出力の生成と複数ラウンドの反復のバランスをとるAPRパイプラインについて検討する。
3つのサイズ(1K, 30K, 65K)と2つのテクニック(フルファインチューニングとLoRA)を持つAPRデータセット上で各モデルを微調整する。
その結果,微調整データセットのごく一部(1%)しか使用せず,最大78%の改善が達成できた。
論文 参考訳(メタデータ) (2025-05-05T18:06:51Z) - Where's the Bug? Attention Probing for Scalable Fault Localization [18.699014321422023]
本稿では, 直接的位置付けラベルを使わずに, 最先端の故障位置付けを学習するBug Attention Probe(BAP)を提案する。
BAPは計算コストのごく一部で大きなオープンウェイトモデルよりもはるかに効率的である。
論文 参考訳(メタデータ) (2025-02-19T18:59:32Z) - An Early FIRST Reproduction and Improvements to Single-Token Decoding for Fast Listwise Reranking [50.81324768683995]
FIRSTは、学習からランクへの目的を統合し、最初の生成されたトークンのみのロジットを活用する新しいアプローチである。
我々は、FIRSTの評価をTRECディープラーニングデータセット(DL19-22)に拡張し、様々な領域でその堅牢性を検証する。
我々の実験は、単一トークンの高速リランクは、ドメイン外リランクの品質を損なうものではないことを確認した。
論文 参考訳(メタデータ) (2024-11-08T12:08:17Z) - Zeroth-Order Fine-Tuning of LLMs in Random Subspaces [63.10833446782114]
言語モデルのサイズが大きくなるにつれて、バックプロパゲーションに対するメモリ要求が増加する。
Zeroth-order (ZO) 最適化手法はメモリ効率の良い代替手段を提供する。
本稿では,高次元摂動によって生じる課題に対処するために,部分空間ゼロ次最適化を提案する。
論文 参考訳(メタデータ) (2024-10-11T17:01:43Z) - Search for Efficient Large Language Models [52.98684997131108]
大規模言語モデル(LLMs)は、人工知能研究の領域で長い間停滞してきた。
軽量プルーニング、量子化、蒸留がLLMの圧縮に取り入れられ、メモリの削減と推論の加速を狙った。
ほとんどのモデル圧縮技術は、最適アーキテクチャの探索を見越して重量最適化に重点を置いている。
論文 参考訳(メタデータ) (2024-09-25T21:32:12Z) - MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts [29.593170782882563]
大きな言語モデル(LLM)は機密情報を記憶し、潜在的な誤用に対する懸念を引き起こす。
以前のプラクティスでは、実用性、効率性、堅牢性という3つの大きな課題に直面しています。
勾配降下に基づくアンラーニング手法であるMEOWを提案する。
論文 参考訳(メタデータ) (2024-09-18T09:55:48Z) - Impact of Large Language Models of Code on Fault Localization [2.936007114555107]
本稿では,FLタスクのための大規模言語モデルの微調整のための,単純だが効果的なシーケンス生成手法を提案する。
具体的には、FLタスク用の代表エンコーダ、エンコーダデコーダ、デコーダベースの13のLLMCを微調整する。
実験結果から, LLMCは50.6%, 64.2%, 72.3%の誤差位置を検出できた。
論文 参考訳(メタデータ) (2024-08-19T02:36:07Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - TernaryLLM: Ternarized Large Language Model [29.29122031050894]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて顕著なパフォーマンスを達成した。
本稿では、Dual Learnable Ternarization (DLT)を導入し、スケールとシフトの両方を学習可能にする。
また、極低ビット量子化で失われた情報を復元するために、OFF(Outlier-Friendly Feature Knowledge Distillation)を提案する。
論文 参考訳(メタデータ) (2024-06-11T11:40:12Z) - Characterizing the Accuracy -- Efficiency Trade-off of Low-rank Decomposition in Language Models [1.401463252785724]
低ランクの分解は、大規模にリアルタイムサービスを必要とするLLMベースのアプリケーションにとって有望な方向である。
低ランクな分解設計空間を形式化し、分解設計空間が巨大であることを示す。
以上の結果から,最小精度で9%のモデルサイズ削減を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-05-10T17:40:02Z) - GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection [133.45193150403537]
LLM(Large Language Models)のトレーニングは、重み付けやGPU状態の増大によって、メモリ上の重大な問題が発生する。
本研究では,メモリ効率のトレーニング戦略としてグラディエント・ローランド・プロジェクション(GaLore)を提案する。
私たちの8ビットのGaLoreは、BF16ベースラインと比較して、メモリを82.5%、トレーニング総メモリを63.3%削減します。
論文 参考訳(メタデータ) (2024-03-06T07:29:57Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - Fine-Tuning Language Models with Just Forward Passes [92.04219196752007]
微調整言語モデル(LM)は、様々な下流タスクで成功したが、LMのサイズが大きくなるにつれて、バックプロパゲーションは大量のメモリを必要とする。
本稿では,メモリ効率の高いゼロソーダ(MeZO)を提案する。
論文 参考訳(メタデータ) (2023-05-27T02:28:10Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。