Privacy-hardened and hallucination-resistant synthetic data generation with logic-solvers
- URL: http://arxiv.org/abs/2410.16705v1
- Date: Tue, 22 Oct 2024 05:20:21 GMT
- Title: Privacy-hardened and hallucination-resistant synthetic data generation with logic-solvers
- Authors: Mark A. Burgess, Brendan Hosking, Roc Reguant, Anubhav Kaphle, Mitchell J. O'Brien, Letitia M. F. Sng, Yatish Jain, Denis C. Bauer,
- Abstract summary: We introduce Genomator, a logic solving approach (SAT solving) which efficiently produces private and realistic representations of the original data.
We demonstrate the method on genomic data, which arguably is the most complex and private information.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine-generated data is a valuable resource for training Artificial Intelligence algorithms, evaluating rare workflows, and sharing data under stricter data legislations. The challenge is to generate data that is accurate and private. Current statistical and deep learning methods struggle with large data volumes, are prone to hallucinating scenarios incompatible with reality, and seldom quantify privacy meaningfully. Here we introduce Genomator, a logic solving approach (SAT solving), which efficiently produces private and realistic representations of the original data. We demonstrate the method on genomic data, which arguably is the most complex and private information. Synthetic genomes hold great potential for balancing underrepresented populations in medical research and advancing global data exchange. We benchmark Genomator against state-of-the-art methodologies (Markov generation, Restricted Boltzmann Machine, Generative Adversarial Network and Conditional Restricted Boltzmann Machines), demonstrating an 84-93% accuracy improvement and 95-98% higher privacy. Genomator is also 1000-1600 times more efficient, making it the only tested method that scales to whole genomes. We show the universal trade-off between privacy and accuracy, and use Genomator's tuning capability to cater to all applications along the spectrum, from provable private representations of sensitive cohorts, to datasets with indistinguishable pharmacogenomic profiles. Demonstrating the production-scale generation of tuneable synthetic data can increase trust and pave the way into the clinic.
Related papers
- Merging synthetic and real embryo data for advanced AI predictions [69.07284335967019]
We train two generative models using two datasets-one we created and made publicly available, and one existing public dataset-to generate synthetic embryo images at various cell stages.
These were combined with real images to train classification models for embryo cell stage prediction.
Our results demonstrate that incorporating synthetic images alongside real data improved classification performance, with the model achieving 97% accuracy compared to 94.5% when trained solely on real data.
arXiv Detail & Related papers (2024-12-02T08:24:49Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - Synthetic data generation for a longitudinal cohort study -- Evaluation,
method extension and reproduction of published data analysis results [0.32593385688760446]
In the health sector, access to individual-level data is often challenging due to privacy concerns.
A promising alternative is the generation of fully synthetic data.
In this study, we use a state-of-the-art synthetic data generation method.
arXiv Detail & Related papers (2023-05-12T13:13:55Z) - Differentially Private Synthetic Data Generation via
Lipschitz-Regularised Variational Autoencoders [3.7463972693041274]
It is often overlooked that generative models are prone to memorising many details of individual training records.
In this paper we explore an alternative approach for privately generating data that makes direct use of the inherentity in generative models.
arXiv Detail & Related papers (2023-04-22T07:24:56Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
We argue for a realistic MIA setting that assumes the attacker has some knowledge of the underlying data distribution.
We propose DOMIAS, a density-based MIA model that aims to infer membership by targeting local overfitting of the generative model.
arXiv Detail & Related papers (2023-02-24T11:27:39Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - PROVGEN: A Privacy-Preserving Approach for Outcome Validation in Genomic Research [2.8443695161923057]
We introduce PROVGEN, a privacy-preserving method for sharing genomic datasets.
Our approach encodes genomic data into binary space and applies a two-stage process.
We show that our proposed scheme outperforms all existing methods in detecting GWAS outcome errors.
arXiv Detail & Related papers (2022-09-13T22:20:41Z) - Enabling Synthetic Data adoption in regulated domains [1.9512796489908306]
The switch from a Model-Centric to a Data-Centric mindset is putting emphasis on data and its quality rather than algorithms.
In particular, the sensitive nature of the information in highly regulated scenarios needs to be accounted for.
A clever way to bypass such a conundrum relies on Synthetic Data: data obtained from a generative process, learning the real data properties.
arXiv Detail & Related papers (2022-04-13T10:53:54Z) - Representative & Fair Synthetic Data [68.8204255655161]
We present a framework to incorporate fairness constraints into the self-supervised learning process.
We generate a representative as well as fair version of the UCI Adult census data set.
We consider representative & fair synthetic data a promising future building block to teach algorithms not on historic worlds, but rather on the worlds that we strive to live in.
arXiv Detail & Related papers (2021-04-07T09:19:46Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Fidelity and Privacy of Synthetic Medical Data [0.0]
The digitization of medical records ushered in a new era of big data to clinical science.
The need to share individual-level medical data continues to grow, and has never been more urgent.
enthusiasm for the use of big data has been tempered by a fully appropriate concern for patient autonomy and privacy.
arXiv Detail & Related papers (2021-01-18T23:01:27Z) - Differentially Private Synthetic Medical Data Generation using
Convolutional GANs [7.2372051099165065]
We develop a differentially private framework for synthetic data generation using R'enyi differential privacy.
Our approach builds on convolutional autoencoders and convolutional generative adversarial networks to preserve some of the critical characteristics of the generated synthetic data.
We demonstrate that our model outperforms existing state-of-the-art models under the same privacy budget.
arXiv Detail & Related papers (2020-12-22T01:03:49Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
We propose Gradient-sanitized Wasserstein Generative Adrial Networks (GS-WGAN)
GS-WGAN allows releasing a sanitized form of sensitive data with rigorous privacy guarantees.
We find our approach consistently outperforms state-of-the-art approaches across multiple metrics.
arXiv Detail & Related papers (2020-06-15T10:01:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.