論文の概要: Time-Resolved MNIST Dataset for Single-Photon Recognition
- arxiv url: http://arxiv.org/abs/2410.16744v1
- Date: Tue, 22 Oct 2024 06:58:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:27:40.686538
- Title: Time-Resolved MNIST Dataset for Single-Photon Recognition
- Title(参考訳): 単光子認識のための時間分解型MNISTデータセット
- Authors: Aleksi Suonsivu, Lauri Salmela, Edoardo Peretti, Leevi Uosukainen, Radu Ciprian Bilcu, Giacomo Boracchi,
- Abstract要約: 時間分解単一光子イメージングは、単一光子の到着をタイムスタンプする能力に特徴付けられる、有望な画像モダリティである。
SPADは、非同期読み出しによるパッシブイメージングに適した、現代的な時間分解ピクセルを実装するための主要な技術である。
本稿では、光子到着の特異性と、時間分解SPADアレイの取得過程に関わる全てのノイズ源を考慮に入れたSPADイメージングの現実的なシミュレーションプロセスについて述べる。
- 参考スコア(独自算出の注目度): 4.019891355693911
- License:
- Abstract: Time-resolved single photon imaging is a promising imaging modality characterized by the unique capability of timestamping the arrivals of single photons. Single-Photon Avalanche Diodes (SPADs) are the leading technology for implementing modern time-resolved pixels, suitable for passive imaging with asynchronous readout. However, they are currently limited to small sized arrays, thus there is a lack of datasets for passive time-resolved SPAD imaging, which in turn hinders research on this peculiar imaging data. In this paper we describe a realistic simulation process for SPAD imaging, which takes into account both the stochastic nature of photon arrivals and all the noise sources involved in the acquisition process of time-resolved SPAD arrays. We have implemented this simulator in a software prototype able to generate arbitrary-sized time-resolved SPAD arrays operating in passive mode. Starting from a reference image, our simulator generates a realistic stream of timestamped photon detections. We use our simulator to generate a time-resolved version of MNIST, which we make publicly available. Our dataset has the purpose of encouraging novel research directions in time-resolved SPAD imaging, as well as investigating the performance of CNN classifiers in extremely low-light conditions.
- Abstract(参考訳): 時間分解単一光子イメージングは、単一の光子の到着をタイムスタンプするユニークな能力を特徴とする、有望な画像モダリティである。
シングルフォトアバランシェダイオード(SPAD)は、非同期読み出しによるパッシブイメージングに適した、現代的な時間分解ピクセルを実装するための主要な技術である。
しかし、現時点では小さなアレイに制限されているため、受動的時間分解SPADイメージングのためのデータセットが不足しており、この特殊な画像データの研究を妨げている。
本稿では、光子到着の確率的性質と、時間分解SPADアレイの取得過程に関わるすべてのノイズ源を考慮に入れたSPADイメージングの現実的なシミュレーションプロセスについて述べる。
我々は,このシミュレータをソフトウェアプロトタイプとして実装し,受動モードで動作する任意のサイズのSPADアレイを生成する。
参照画像から、シミュレータはリアルタイムな光子検出ストリームを生成する。
我々はシミュレーターを用いて、MNISTの時間分解版を生成し、それを公開している。
我々のデータセットは、時間分解SPADイメージングにおける新しい研究方向の推進と、極低照度条件下でのCNN分類器の性能調査を目的としている。
関連論文リスト
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
疎二分量時間画像データから高画質の画像スタックを元の解像度で再構成する新しい方法であるbit2bitを提案する。
Poisson denoisingの最近の研究に触発されて、スパースバイナリ光子データから高密度な画像列を生成するアルゴリズムを開発した。
本研究では,様々な課題の画像条件下でのSPADの高速映像を多種多種に含む新しいデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-30T17:30:35Z) - Characterization of point-source transient events with a rolling-shutter compressed sensing system [0.0]
ポイントソースの過渡イベント(PSTE)は、イメージングシステムにいくつかの課題をもたらす。
これらの要件を満たす従来のイメージングシステムは、価格、サイズ、重量、消費電力、データ帯域幅の点で費用がかかる。
画像システムのローリングシャッター読み出しに適応した新しい圧縮センシングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-08-29T19:22:37Z) - XLD: A Cross-Lane Dataset for Benchmarking Novel Driving View Synthesis [84.23233209017192]
本稿では,自律走行シミュレーションに特化して設計された新しい駆動ビュー合成データセットとベンチマークを提案する。
データセットには、トレーニング軌跡から1-4mずれて取得した画像のテストが含まれているため、ユニークなものだ。
我々は、フロントオンリーおよびマルチカメラ設定下で、既存のNVSアプローチを評価するための最初の現実的なベンチマークを確立する。
論文 参考訳(メタデータ) (2024-06-26T14:00:21Z) - Distributed Stochastic Optimization of a Neural Representation Network for Time-Space Tomography Reconstruction [4.689071714940848]
X線CT(Computerd tomography)を用いた動的事象や変形物体の4次元時間空間再構成は、非常に不適切な逆問題である。
既存のアプローチでは、オブジェクトは数千から数百のX線投影計測画像の間静止していると仮定している。
本稿では,新しい分散学習アルゴリズムを用いて学習した,分散暗黙的ニューラルネットワークを用いた4次元時間空間再構成を提案する。
論文 参考訳(メタデータ) (2024-04-29T19:41:51Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
確率拡散モデル (Probabilistic Diffusion Models, PDMs) は、最近、非常に有望な生成モデルのクラスとして登場した。
ここでは、PDMを活用して、レーダーベースの衛星画像データセットを複数生成する。
PDMは複雑で現実的な構造を持つ画像を生成することに成功したが、サンプリング時間は依然として問題である。
論文 参考訳(メタデータ) (2023-08-31T16:26:17Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - High-speed object detection with a single-photon time-of-flight image
sensor [2.648554238948439]
我々は,64×32の空間解像度で16ビンの光子タイミングヒストグラムを出力する携帯型SPADカメラシステムの結果を報告する。
結果は、人間の反応時間よりも早く恩恵を受けるであろう安全クリティカルなコンピュータビジョンアプリケーションに関係している。
論文 参考訳(メタデータ) (2021-07-28T14:53:44Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
本稿では,ISTAアルゴリズムの展開に基づく時空間領域におけるサブNyquistサンプルからの再構成手法を提案する。
本手法は,高品質な撮像性能を確保しつつ,配列要素数,サンプリングレート,計算時間を削減できる。
論文 参考訳(メタデータ) (2021-03-01T19:19:38Z) - Real-time Non-line-of-sight Imaging with Two-step Deep Remapping [0.0]
非視線(NLOS)イメージングは、間接光を考慮に入れます。
ほとんどのソリューションは過渡走査プロセスを使用し、続いてNLOSシーンを再構築するためのバックプロジェクションベースのアルゴリズムが続く。
ここでは、上記の欠陥に対処する新しいNLOSソリューションを提案し、検出装置と再構成アルゴリズムの両方に革新をもたらす。
論文 参考訳(メタデータ) (2021-01-26T00:08:54Z) - Unlimited Resolution Image Generation with R2D2-GANs [69.90258455164513]
本稿では,任意の解像度の高品質な画像を生成するための新しいシミュレーション手法を提案する。
この方法では、フル長のミッション中に収集したソナースキャンと同等の大きさのソナースキャンを合成することができる。
生成されたデータは、連続的で、現実的に見え、また、取得の実際の速度の少なくとも2倍の速さで生成される。
論文 参考訳(メタデータ) (2020-03-02T17:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。