論文の概要: Survival Models: Proper Scoring Rule and Stochastic Optimization with Competing Risks
- arxiv url: http://arxiv.org/abs/2410.16765v1
- Date: Tue, 22 Oct 2024 07:33:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:30:50.664404
- Title: Survival Models: Proper Scoring Rule and Stochastic Optimization with Competing Risks
- Title(参考訳): 生存モデル:競争リスクを考慮した適切なスコアリングルールと確率最適化
- Authors: Julie Alberge, Vincent Maladière, Olivier Grisel, Judith Abécassis, Gaël Varoquaux,
- Abstract要約: SurvivalBoostは、4つの実生活データセットで12の最先端モデルを上回っている。
優れたキャリブレーション、任意の時間軸にわたって予測する機能、既存のメソッドよりも高速な計算時間を提供する。
- 参考スコア(独自算出の注目度): 6.9648613217501705
- License:
- Abstract: When dealing with right-censored data, where some outcomes are missing due to a limited observation period, survival analysis -- known as time-to-event analysis -- focuses on predicting the time until an event of interest occurs. Multiple classes of outcomes lead to a classification variant: predicting the most likely event, a less explored area known as competing risks. Classic competing risks models couple architecture and loss, limiting scalability.To address these issues, we design a strictly proper censoring-adjusted separable scoring rule, allowing optimization on a subset of the data as each observation is evaluated independently. The loss estimates outcome probabilities and enables stochastic optimization for competing risks, which we use for efficient gradient boosting trees. SurvivalBoost not only outperforms 12 state-of-the-art models across several metrics on 4 real-life datasets, both in competing risks and survival settings, but also provides great calibration, the ability to predict across any time horizon, and computation times faster than existing methods.
- Abstract(参考訳): 観測期間が限られているため、何らかの結果が失われている右検閲データを扱う場合、生存時間分析(time-to-event analysis)として知られる生存時間分析は、関心事が起こるまで時間を予測することに焦点を当てる。
複数の結果のクラスは分類のバリエーションをもたらし、最も可能性の高い事象を予測し、競合するリスクとして知られる未調査領域を予測する。
従来の競合するリスクモデルでは、アーキテクチャと損失を結合し、スケーラビリティを制限し、これらの問題に対処するために、厳密に適切な検閲調整された分離可能なスコアリングルールを設計し、各観測が独立して評価されるにつれて、データのサブセットに対する最適化を可能にする。
この損失は, 結果の確率を推定し, 競合するリスクに対する確率的最適化を可能にする。
SurvivalBoostは、競合するリスクとサバイバル設定の両方において、4つのリアルライフデータセット上のいくつかのメトリクスで12の最先端モデルよりも優れています。
関連論文リスト
- Risk and cross validation in ridge regression with correlated samples [72.59731158970894]
我々は,データポイントが任意の相関関係を持つ場合,リッジ回帰のイン・オブ・サンプルリスクのトレーニング例を提供する。
さらに、テストポイントがトレーニングセットと非自明な相関を持ち、時系列予測で頻繁に発生するような場合まで分析を拡張します。
我々は多種多様な高次元データにまたがって理論を検証する。
論文 参考訳(メタデータ) (2024-08-08T17:27:29Z) - Teaching Models To Survive: Proper Scoring Rule and Stochastic Optimization with Competing Risks [6.9648613217501705]
データが正しい検閲された場合、サバイバル分析は「イベントの時間」を計算することができる。
我々は,データの部分に対して最適化可能な,厳格に適切な検閲調整付き分離可能なスコアリングルールを導入する。
11の最先端モデルと比較して、このモデルであるMulti Incidenceは、生存率と競合するリスクの確率を推定するのに最適である。
論文 参考訳(メタデータ) (2024-06-20T08:00:42Z) - TripleSurv: Triplet Time-adaptive Coordinate Loss for Survival Analysis [15.496918127515665]
本稿では,学習過程の複雑さを扱える時間適応座標損失関数TripleSurvを提案する。
我々のTripleSurvは3つの実世界の生存データセットと公開合成データセットで評価されている。
論文 参考訳(メタデータ) (2024-01-05T08:37:57Z) - CenTime: Event-Conditional Modelling of Censoring in Survival Analysis [49.44664144472712]
CenTimeは、イベントへの時間を直接見積もる、サバイバル分析の新しいアプローチである。
本手法は,非検閲データが少ない場合でも,堅牢なイベント条件検閲機構を特徴とする。
以上の結果から,CenTimeは同等の性能を維持しつつ,死までの時間を予測する上で,最先端のパフォーマンスを提供することがわかった。
論文 参考訳(メタデータ) (2023-09-07T17:07:33Z) - Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation [59.500347564280204]
本稿では, Aleatoric Uncertainty-aware Recommendation (AUR) フレームワークを提案する。
AURは、新しい不確実性推定器と通常のレコメンデータモデルで構成されている。
誤ラベルの可能性がペアの可能性を反映しているため、AURは不確実性に応じてレコメンデーションを行う。
論文 参考訳(メタデータ) (2022-09-22T04:32:51Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、機械学習のワークホースであるが、適応的に収集されたデータを使用すると、そのモデルに依存しない保証が失敗する可能性がある。
本研究では,仮説クラス上での損失関数の平均値を最小限に抑えるため,適応的に収集したデータを用いた一般的な重み付きERMアルゴリズムについて検討する。
政策学習では、探索がゼロになるたびに既存の文献のオープンギャップを埋める率-最適後悔保証を提供する。
論文 参考訳(メタデータ) (2021-06-03T09:50:13Z) - DeepHazard: neural network for time-varying risks [0.6091702876917281]
生存予測のための新しいフレキシブルな手法,DeepHazardを提案する。
我々のアプローチは、時間内に添加物としてのみ制限される、広範囲の継続的なハザード形態に適合している。
数値的な例では,我々の手法は,C-インデックス計量を用いて評価された予測能力において,既存の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2020-07-26T21:01:49Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Deep Survival Machines: Fully Parametric Survival Regression and
Representation Learning for Censored Data with Competing Risks [14.928328404160299]
本稿では,検閲データを用いた時系列予測問題において,相対リスクを推定するための新しいアプローチについて述べる。
我々のアプローチは、基礎となる生存分布の一定の比例的ハザードの強い仮定を必要としない。
これは検閲の有無で競合するリスクを伴う生存時間を完全にパラメトリックに推定する最初の作品である。
論文 参考訳(メタデータ) (2020-03-02T20:21:59Z) - Survival Cluster Analysis [93.50540270973927]
異なるリスクプロファイルを持つサブポピュレーションを特定するために、生存分析には未解決の必要性がある。
このニーズに対処するアプローチは、個々の成果のキャラクタリゼーションを改善する可能性が高い。
論文 参考訳(メタデータ) (2020-02-29T22:41:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。