One-Step Diffusion Distillation through Score Implicit Matching
- URL: http://arxiv.org/abs/2410.16794v1
- Date: Tue, 22 Oct 2024 08:17:20 GMT
- Title: One-Step Diffusion Distillation through Score Implicit Matching
- Authors: Weijian Luo, Zemin Huang, Zhengyang Geng, J. Zico Kolter, Guo-jun Qi,
- Abstract summary: We present Score Implicit Matching (SIM) a new approach to distilling pre-trained diffusion models into single-step generator models.
SIM shows strong empirical performances for one-step generators.
By applying SIM to a leading transformer-based diffusion model, we distill a single-step generator for text-to-image generation.
- Score: 74.91234358410281
- License:
- Abstract: Despite their strong performances on many generative tasks, diffusion models require a large number of sampling steps in order to generate realistic samples. This has motivated the community to develop effective methods to distill pre-trained diffusion models into more efficient models, but these methods still typically require few-step inference or perform substantially worse than the underlying model. In this paper, we present Score Implicit Matching (SIM) a new approach to distilling pre-trained diffusion models into single-step generator models, while maintaining almost the same sample generation ability as the original model as well as being data-free with no need of training samples for distillation. The method rests upon the fact that, although the traditional score-based loss is intractable to minimize for generator models, under certain conditions we can efficiently compute the gradients for a wide class of score-based divergences between a diffusion model and a generator. SIM shows strong empirical performances for one-step generators: on the CIFAR10 dataset, it achieves an FID of 2.06 for unconditional generation and 1.96 for class-conditional generation. Moreover, by applying SIM to a leading transformer-based diffusion model, we distill a single-step generator for text-to-image (T2I) generation that attains an aesthetic score of 6.42 with no performance decline over the original multi-step counterpart, clearly outperforming the other one-step generators including SDXL-TURBO of 5.33, SDXL-LIGHTNING of 5.34 and HYPER-SDXL of 5.85. We will release this industry-ready one-step transformer-based T2I generator along with this paper.
Related papers
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Flow Generator Matching [35.371071097381346]
Flow Generator Matching (FGM) is designed to accelerate the sampling of flow-matching models into a one-step generation.
On the CIFAR10 unconditional generation benchmark, our one-step FGM model achieves a new record Fr'echet Inception Distance (FID) score of 3.08.
MM-DiT-FGM one-step text-to-image model demonstrates outstanding industry-level performance.
arXiv Detail & Related papers (2024-10-25T05:41:28Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.
We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - Directly Denoising Diffusion Models [6.109141407163027]
We present Directly Denoising Diffusion Model (DDDM), a simple and generic approach for generating realistic images with few-step sampling.
Our model achieves FID scores of 2.57 and 2.33 on CIFAR-10 in one-step and two-step sampling respectively, surpassing those obtained from GANs and distillation-based models.
For ImageNet 64x64, our approach stands as a competitive contender against leading models.
arXiv Detail & Related papers (2024-05-22T11:20:32Z) - Score identity Distillation: Exponentially Fast Distillation of Pretrained Diffusion Models for One-Step Generation [61.03530321578825]
We introduce Score identity Distillation (SiD), an innovative data-free method that distills the generative capabilities of pretrained diffusion models into a single-step generator.
SiD not only facilitates an exponentially fast reduction in Fr'echet inception distance (FID) during distillation but also approaches or even exceeds the FID performance of the original teacher diffusion models.
arXiv Detail & Related papers (2024-04-05T12:30:19Z) - Consistency Models [89.68380014789861]
We propose a new family of models that generate high quality samples by directly mapping noise to data.
They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality.
They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training.
arXiv Detail & Related papers (2023-03-02T18:30:16Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.