Flow Generator Matching
- URL: http://arxiv.org/abs/2410.19310v1
- Date: Fri, 25 Oct 2024 05:41:28 GMT
- Title: Flow Generator Matching
- Authors: Zemin Huang, Zhengyang Geng, Weijian Luo, Guo-jun Qi,
- Abstract summary: Flow Generator Matching (FGM) is designed to accelerate the sampling of flow-matching models into a one-step generation.
On the CIFAR10 unconditional generation benchmark, our one-step FGM model achieves a new record Fr'echet Inception Distance (FID) score of 3.08.
MM-DiT-FGM one-step text-to-image model demonstrates outstanding industry-level performance.
- Score: 35.371071097381346
- License:
- Abstract: In the realm of Artificial Intelligence Generated Content (AIGC), flow-matching models have emerged as a powerhouse, achieving success due to their robust theoretical underpinnings and solid ability for large-scale generative modeling. These models have demonstrated state-of-the-art performance, but their brilliance comes at a cost. The process of sampling from these models is notoriously demanding on computational resources, as it necessitates the use of multi-step numerical ordinary differential equations (ODEs). Against this backdrop, this paper presents a novel solution with theoretical guarantees in the form of Flow Generator Matching (FGM), an innovative approach designed to accelerate the sampling of flow-matching models into a one-step generation, while maintaining the original performance. On the CIFAR10 unconditional generation benchmark, our one-step FGM model achieves a new record Fr\'echet Inception Distance (FID) score of 3.08 among few-step flow-matching-based models, outperforming original 50-step flow-matching models. Furthermore, we use the FGM to distill the Stable Diffusion 3, a leading text-to-image flow-matching model based on the MM-DiT architecture. The resulting MM-DiT-FGM one-step text-to-image model demonstrates outstanding industry-level performance. When evaluated on the GenEval benchmark, MM-DiT-FGM has delivered remarkable generating qualities, rivaling other multi-step models in light of the efficiency of a single generation step.
Related papers
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - One-Step Diffusion Distillation through Score Implicit Matching [74.91234358410281]
We present Score Implicit Matching (SIM) a new approach to distilling pre-trained diffusion models into single-step generator models.
SIM shows strong empirical performances for one-step generators.
By applying SIM to a leading transformer-based diffusion model, we distill a single-step generator for text-to-image generation.
arXiv Detail & Related papers (2024-10-22T08:17:20Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Poisson flow consistency models for low-dose CT image denoising [3.6218104434936658]
We introduce a novel image denoising technique which combines the flexibility afforded in Poisson flow generative models (PFGM)++ with the, high quality, single step sampling of consistency models.
Our results indicate that the added flexibility of tuning the hyper parameter D, the dimensionality of the augmentation variables in PFGM++, allows us to outperform consistency models.
arXiv Detail & Related papers (2024-02-13T01:39:56Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - Score-Based Generative Models for Molecule Generation [0.8808021343665321]
We train a Transformer-based score function on representations of 1.5 million samples from the ZINC dataset.
We use the Moses benchmarking framework to evaluate the generated samples on a suite of metrics.
arXiv Detail & Related papers (2022-03-07T13:46:02Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
We introduce channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR)
Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data.
We show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.
arXiv Detail & Related papers (2020-04-08T09:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.