Pedestrian motion prediction evaluation for urban autonomous driving
- URL: http://arxiv.org/abs/2410.16864v1
- Date: Tue, 22 Oct 2024 10:06:50 GMT
- Title: Pedestrian motion prediction evaluation for urban autonomous driving
- Authors: Dmytro Zabolotnii, Yar Muhammad, Naveed Muhammad,
- Abstract summary: We analyze selected publications with provided open-source solutions to determine valuability of traditional motion prediction metrics.
This perspective should be valuable to any potential autonomous driving or robotics engineer looking for the real-world performance of the existing state-of-art pedestrian motion prediction problem.
- Score: 0.0
- License:
- Abstract: Pedestrian motion prediction is a key part of the modular-based autonomous driving pipeline, ensuring safe, accurate, and timely awareness of human agents' possible future trajectories. The autonomous vehicle can use this information to prevent any possible accidents and create a comfortable and pleasant driving experience for the passengers and pedestrians. A wealth of research was done on the topic from the authors of robotics, computer vision, intelligent transportation systems, and other fields. However, a relatively unexplored angle is the integration of the state-of-art solutions into existing autonomous driving stacks and evaluating them in real-life conditions rather than sanitized datasets. We analyze selected publications with provided open-source solutions and provide a perspective obtained by integrating them into existing Autonomous Driving framework - Autoware Mini and performing experiments in natural urban conditions in Tartu, Estonia to determine valuability of traditional motion prediction metrics. This perspective should be valuable to any potential autonomous driving or robotics engineer looking for the real-world performance of the existing state-of-art pedestrian motion prediction problem. The code with instructions on accessing the dataset is available at https://github.com/dmytrozabolotnii/autoware_mini.
Related papers
- Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
We propose a comprehensive approach to explore and analyze the causality of end-to-end autonomous driving.
Our work is the first to unveil the mystery of end-to-end autonomous driving and turn the black box into a white one.
arXiv Detail & Related papers (2024-07-09T04:56:11Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - Are you a robot? Detecting Autonomous Vehicles from Behavior Analysis [6.422370188350147]
We present a framework that monitors active vehicles using camera images and state information in order to determine whether vehicles are autonomous.
Essentially, it builds on the cooperation among vehicles, which share their data acquired on the road feeding a machine learning model to identify autonomous cars.
Experiments show it is possible to discriminate the two behaviors by analyzing video clips with an accuracy of 80%, which improves up to 93% when the target state information is available.
arXiv Detail & Related papers (2024-03-14T17:00:29Z) - Applications of Computer Vision in Autonomous Vehicles: Methods, Challenges and Future Directions [2.693342141713236]
This paper reviews publications on computer vision and autonomous driving that are published during the last ten years.
In particular, we first investigate the development of autonomous driving systems and summarize these systems that are developed by the major automotive manufacturers from different countries.
Then, a comprehensive overview of computer vision applications for autonomous driving such as depth estimation, object detection, lane detection, and traffic sign recognition are discussed.
arXiv Detail & Related papers (2023-11-15T16:41:18Z) - On the Road with GPT-4V(ision): Early Explorations of Visual-Language
Model on Autonomous Driving [37.617793990547625]
This report provides an exhaustive evaluation of the latest state-of-the-art VLM, GPT-4V.
We explore the model's abilities to understand and reason about driving scenes, make decisions, and ultimately act in the capacity of a driver.
Our findings reveal that GPT-4V demonstrates superior performance in scene understanding and causal reasoning compared to existing autonomous systems.
arXiv Detail & Related papers (2023-11-09T12:58:37Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Data and Knowledge for Overtaking Scenarios in Autonomous Driving [0.0]
The overtaking maneuver is one of the most critical actions of driving.
Despite the amount of work available in the literature, just a few handle overtaking maneuvers.
This work contributes in this area by presenting a new synthetic dataset whose focus is the overtaking maneuver.
arXiv Detail & Related papers (2023-05-30T21:27:05Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.