論文の概要: SG-FSM: A Self-Guiding Zero-Shot Prompting Paradigm for Multi-Hop Question Answering Based on Finite State Machine
- arxiv url: http://arxiv.org/abs/2410.17021v1
- Date: Tue, 22 Oct 2024 13:47:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:25:41.937661
- Title: SG-FSM: A Self-Guiding Zero-Shot Prompting Paradigm for Multi-Hop Question Answering Based on Finite State Machine
- Title(参考訳): SG-FSM:有限状態マシンに基づくマルチホップ質問応答のためのセルフガイドゼロショットプロンプトパラダイム
- Authors: Xiaochen Wang, Junqing He, Liang Chen, Reza Haf Zhe Yang, Yiru Wang, Xiangdi Meng, Kunhao Pan, Zhifang Sui,
- Abstract要約: MHQA (Multi-hop Question Answering) は、多くの既存モデルにおいて依然として困難である。
マルチホップ推論能力を高めるために,SG-FSM(Self-Guiding prompting Finite State Machine)を提案する。
- 参考スコア(独自算出の注目度): 27.274219226254026
- License:
- Abstract: Large Language Models with chain-of-thought prompting, such as OpenAI-o1, have shown impressive capabilities in natural language inference tasks. However, Multi-hop Question Answering (MHQA) remains challenging for many existing models due to issues like hallucination, error propagation, and limited context length. To address these challenges and enhance LLMs' performance on MHQA, we propose the Self-Guiding prompting Finite State Machine (SG-FSM), designed to strengthen multi-hop reasoning abilities. Unlike traditional chain-of-thought methods, SG-FSM tackles MHQA by iteratively breaking down complex questions into sub-questions, correcting itself to improve accuracy. It processes one sub-question at a time, dynamically deciding the next step based on the current context and results, functioning much like an automaton. Experiments across various benchmarks demonstrate the effectiveness of our approach, outperforming strong baselines on challenging datasets such as Musique. SG-FSM reduces hallucination, enabling recovery of the correct final answer despite intermediate errors. It also improves adherence to specified output formats, simplifying evaluation significantly.
- Abstract(参考訳): OpenAI-o1のようなチェーン・オブ・シークレットプロンプトを持つ大規模言語モデルは、自然言語推論タスクにおいて素晴らしい機能を示している。
しかし、幻覚、エラーの伝播、コンテキスト長の制限といった問題により、Multi-hop Question Answering (MHQA) は既存の多くのモデルでは依然として困難である。
これらの課題に対処し,MHQA 上での LLM の性能向上を図るため,マルチホップ推論能力の向上を目的とした Self-Guiding prompting Finite State Machine (SG-FSM) を提案する。
従来のチェーン・オブ・シント法とは異なり、SG-FSMは複雑な質問をサブクエストに繰り返し分割することでMHQAに取り組む。
一度に1つのサブクエストを処理し、現在のコンテキストと結果に基づいて次のステップを動的に決定し、オートマトンのように機能する。
様々なベンチマーク実験により、アプローチの有効性が示され、Musiqueのような挑戦的なデータセットに対して強いベースラインを上回ります。
SG-FSMは幻覚を減少させ、中間誤差にもかかわらず正しい最終回答の回復を可能にする。
また、特定の出力フォーマットへの準拠を改善し、評価を大幅に単純化する。
関連論文リスト
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - Zero-Shot Multi-Hop Question Answering via Monte-Carlo Tree Search with Large Language Models [19.214387260667348]
本稿ではモンテカルロ木探索(MCTS)に基づくMZQA(Zero-shot Multi-hop Question Answering)を提案する。
従来とは違って,通常はドメインの専門知識を必要とする手作りの少数ショットの例をサポートせずに,命令のみに依存するゼロショットプロンプト手法を提案する。
また,MZQA-BCは自己生成MCTS推論軌道を学習し,解析速度を10倍以上に向上させる。
論文 参考訳(メタデータ) (2024-09-28T15:13:04Z) - FSM: A Finite State Machine Based Zero-Shot Prompting Paradigm for Multi-Hop Question Answering [26.398873686905063]
大きな言語モデル (LLM) とチェーン・オブ・シント (COT) のプロンプトは、単純な自然言語推論タスクにおいて印象的な能力を示している。
本稿では,複雑なタスクに対するLLMの推論能力を高めるために,FSM(Finite State Machine)というプロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-07-03T10:01:01Z) - On the Worst Prompt Performance of Large Language Models [93.13542053835542]
大規模言語モデル(LLM)の性能は,プロンプトの表現に非常に敏感である。
セマンティックに等価なケースレベルのクエリで構成される新しいベンチマークであるRobustAlpacaEvalを紹介する。
RobustAlpacaEvalとChatGPT、およびLlama、Mistral、Gemmaファミリーの6つのオープンソースLLMによる実験により、モデル性能のかなりのばらつきが明らかになった。
論文 参考訳(メタデータ) (2024-06-08T13:40:38Z) - Self-prompted Chain-of-Thought on Large Language Models for Open-domain
Multi-hop Reasoning [70.74928578278957]
オープンドメイン質問回答(ODQA)では、ほとんどの既存の質問はコモンセンスのシングルホップ推論を必要とする。
大規模言語モデル(LLM)は、外部コーパスなしでODQAを促進するために重要な有用性を見出した。
高品質なCoTを大量生産する自動化フレームワークSP-CoTを提案する。
論文 参考訳(メタデータ) (2023-10-20T14:51:10Z) - Performance Prediction for Multi-hop Questions [7.388002745070808]
オープンドメイン型マルチホップ質問の性能を予測するための検索前手法であるmultHPを提案する。
評価の結果,提案モデルが従来のシングルホップQPPモデルよりも優れた性能を示すことが示唆された。
論文 参考訳(メタデータ) (2023-08-12T01:34:41Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
大規模言語モデル (LLM) は、ステップ・バイ・ステップ・チェーン・オブ・シークレット (CoT) をデモンストレーションとして組み込むことで、様々な推論タスクにおいて高い効果的な性能を達成することができる。
本稿では,イターCoT (Iterative bootstrapping in Chain-of-Thoughts Prompting) を導入する。
論文 参考訳(メタデータ) (2023-04-23T13:54:39Z) - Rethinking Label Smoothing on Multi-hop Question Answering [87.68071401870283]
MHQA (Multi-Hop Question Answering) は質問応答において重要な分野である。
本研究では,マルチホップ推論の性能を制限する主要な要因を解析する。
学習プロセスに不確実性を組み込んだ新しいラベル平滑化手法F1 Smoothingを提案する。
論文 参考訳(メタデータ) (2022-12-19T14:48:08Z) - Modeling Multi-hop Question Answering as Single Sequence Prediction [88.72621430714985]
本稿では,単純な生成手法(PathFid)を提案する。
PathFidは、マルチホップ質問に対する回答を解決するための推論プロセスを明示的にモデル化する。
実験の結果,PathFidは2つのマルチホップQAデータセットに対して高い性能向上をもたらすことが示された。
論文 参考訳(メタデータ) (2022-05-18T21:57:59Z) - KECP: Knowledge Enhanced Contrastive Prompting for Few-shot Extractive
Question Answering [28.18555591429343]
我々はKECP(Knowledge Enhanced Contrastive Prompt-tuning)という新しいフレームワークを提案する。
PLMにポインタヘッドを追加する代わりに、タスクを非自己回帰型マスケッド言語モデリング(MLM)生成問題に変換する。
提案手法は,数ショット設定における最先端のアプローチを大きなマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2022-05-06T08:31:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。