Exploration and Persuasion
- URL: http://arxiv.org/abs/2410.17086v1
- Date: Tue, 22 Oct 2024 15:13:13 GMT
- Title: Exploration and Persuasion
- Authors: Aleksandrs Slivkins,
- Abstract summary: We show how to incentivize self-interested agents to explore when they prefer to exploit.
Consider a population of self-interested agents that make decisions under uncertainty.
They "explore" to acquire new information and "exploit" this information to make good decisions.
This is because exploration is costly, but its benefits are spread over many agents in the future.
- Score: 58.87314871998078
- License:
- Abstract: How to incentivize self-interested agents to explore when they prefer to exploit? Consider a population of self-interested agents that make decisions under uncertainty. They "explore" to acquire new information and "exploit" this information to make good decisions. Collectively they need to balance these two objectives, but their incentives are skewed toward exploitation. This is because exploration is costly, but its benefits are spread over many agents in the future. "Incentivized Exploration" addresses this issue via strategic communication. Consider a benign ``principal" which can communicate with the agents and make recommendations, but cannot force the agents to comply. Moreover, suppose the principal can observe the agents' decisions and the outcomes of these decisions. The goal is to design a communication and recommendation policy which (i) achieves a desirable balance between exploration and exploitation, and (ii) incentivizes the agents to follow recommendations. What makes it feasible is "information asymmetry": the principal knows more than any one agent, as it collects information from many. It is essential that the principal does not fully reveal all its knowledge to the agents. Incentivized exploration combines two important problems in, resp., machine learning and theoretical economics. First, if agents always follow recommendations, the principal faces a multi-armed bandit problem: essentially, design an algorithm that balances exploration and exploitation. Second, interaction with a single agent corresponds to "Bayesian persuasion", where a principal leverages information asymmetry to convince an agent to take a particular action. We provide a brief but self-contained introduction to each problem through the lens of incentivized exploration, solving a key special case of the former as a sub-problem of the latter.
Related papers
- Incentivized Learning in Principal-Agent Bandit Games [62.41639598376539]
This work considers a repeated principal-agent bandit game, where the principal can only interact with her environment through the agent.
The principal can influence the agent's decisions by offering incentives which add up to his rewards.
We present nearly optimal learning algorithms for the principal's regret in both multi-armed and linear contextual settings.
arXiv Detail & Related papers (2024-03-06T16:00:46Z) - Principal-Agent Reward Shaping in MDPs [50.914110302917756]
Principal-agent problems arise when one party acts on behalf of another, leading to conflicts of interest.
We study a two-player Stack game where the principal and the agent have different reward functions, and the agent chooses an MDP policy for both players.
Our results establish trees and deterministic decision processes with a finite horizon.
arXiv Detail & Related papers (2023-12-30T18:30:44Z) - Estimating and Incentivizing Imperfect-Knowledge Agents with Hidden
Rewards [4.742123770879715]
In practice, incentive providers often cannot observe the reward realizations of incentivized agents.
This paper explores a repeated adverse selection game between a self-interested learning agent and a learning principal.
We introduce an estimator whose only input is the history of principal's incentives and agent's choices.
arXiv Detail & Related papers (2023-08-13T08:12:01Z) - Information Design in Multi-Agent Reinforcement Learning [61.140924904755266]
Reinforcement learning (RL) is inspired by the way human infants and animals learn from the environment.
Research in computational economics distills two ways to influence others directly: by providing tangible goods (mechanism design) and by providing information (information design)
arXiv Detail & Related papers (2023-05-08T07:52:15Z) - (Almost) Free Incentivized Exploration from Decentralized Learning
Agents [27.012893220438702]
Incentivized exploration in multi-armed bandits (MAB) has witnessed increasing interests and many progresses in recent years.
We study incentivized exploration with multiple and long-term strategic agents.
An important observation of this work is that strategic agents' intrinsic needs of learning benefit (instead of harming) the principal's explorations by providing "free pulls"
arXiv Detail & Related papers (2021-10-27T17:55:19Z) - Exploration and Incentives in Reinforcement Learning [107.42240386544633]
We consider complex exploration problems, where each agent faces the same (but unknown) MDP.
Agents control the choice of policies, whereas an algorithm can only issue recommendations.
We design an algorithm which explores all reachable states in the MDP.
arXiv Detail & Related papers (2021-02-28T00:15:53Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
We show how to equip RL agents with the ability to give rewards directly to other agents, using a learned incentive function.
Such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games.
Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.
arXiv Detail & Related papers (2020-06-10T20:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.