CLAP: Concave Linear APproximation for Quadratic Graph Matching
- URL: http://arxiv.org/abs/2410.17101v1
- Date: Tue, 22 Oct 2024 15:28:18 GMT
- Title: CLAP: Concave Linear APproximation for Quadratic Graph Matching
- Authors: Yongqing Liang, Huijun Han, Xin Li,
- Abstract summary: We introduce a linear model and designed a novel approximation matrix for graph matching.
We then transform the original QAP into a linear model that is concave for the structural constraint.
This model can be solved using the Sinkhorn optimal transport algorithm.
- Score: 5.417323487240968
- License:
- Abstract: Solving point-wise feature correspondence in visual data is a fundamental problem in computer vision. A powerful model that addresses this challenge is to formulate it as graph matching, which entails solving a Quadratic Assignment Problem (QAP) with node-wise and edge-wise constraints. However, solving such a QAP can be both expensive and difficult due to numerous local extreme points. In this work, we introduce a novel linear model and solver designed to accelerate the computation of graph matching. Specifically, we employ a positive semi-definite matrix approximation to establish the structural attribute constraint.We then transform the original QAP into a linear model that is concave for maximization. This model can subsequently be solved using the Sinkhorn optimal transport algorithm, known for its enhanced efficiency and numerical stability compared to existing approaches. Experimental results on the widely used benchmark PascalVOC showcase that our algorithm achieves state-of-the-art performance with significantly improved efficiency. Source code: https://github.com/xmlyqing00/clap
Related papers
- Convergence Guarantees for the DeepWalk Embedding on Block Models [9.898607871253775]
We show how to use the DeepWalk algorithm on graphs obtained from the Block Model (SBM)
Despite being simplistic, the SBM has proved to be a classic model for analyzing algorithms on large graphs.
arXiv Detail & Related papers (2024-10-26T18:35:11Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Efficient Graph Laplacian Estimation by Proximal Newton [12.05527862797306]
A graph learning problem can be formulated as a maximum likelihood estimation (MLE) of the precision matrix.
We develop a second-order approach to obtain an efficient solver utilizing several algorithmic features.
arXiv Detail & Related papers (2023-02-13T15:13:22Z) - Fast and Robust Non-Rigid Registration Using Accelerated
Majorization-Minimization [35.66014845211251]
Non-rigid registration, which deforms a source shape in a non-rigid way to align with a target shape, is a classical problem in computer vision.
Existing methods typically adopt the $ell_p$ type robust norm to measure the alignment error and regularize the smoothness of deformation.
We propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization.
arXiv Detail & Related papers (2022-06-07T16:00:33Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
This paper presents a convex-analytic framework to learn from data.
We show that a triangular convexity decomposition is guaranteed by a transform of the corresponding to its upper part.
arXiv Detail & Related papers (2021-09-17T17:46:12Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
In many applications, we need algorithms which can align partially overlapping point sets are invariant to the corresponding corresponding RPM algorithm.
We first show that the objective is a cubic bound function. We then utilize the convex envelopes of trilinear and bilinear monomial transformations to derive its lower bound.
We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently.
arXiv Detail & Related papers (2021-01-19T04:24:23Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
This work introduces a new MAP-solver, based on the popular Dual Block-Coordinate Ascent principle.
Surprisingly, by making a small change to the low-performing solver, we derive the new solver MPLP++ that significantly outperforms all existing solvers by a large margin.
arXiv Detail & Related papers (2020-04-16T16:20:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.