論文の概要: Emphasizing Discriminative Features for Dataset Distillation in Complex Scenarios
- arxiv url: http://arxiv.org/abs/2410.17193v1
- Date: Tue, 22 Oct 2024 17:13:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-23 14:30:06.463880
- Title: Emphasizing Discriminative Features for Dataset Distillation in Complex Scenarios
- Title(参考訳): 複合シナリオにおけるデータセット蒸留における識別的特徴の強調
- Authors: Kai Wang, Zekai Li, Zhi-Qi Cheng, Samir Khaki, Ahmad Sajedi, Ramakrishna Vedantam, Konstantinos N Plataniotis, Alexander Hauptmann, Yang You,
- Abstract要約: 合成画像における重要な識別領域を強化するデータセット蒸留法であるEDFを提案する。
単純なデータセットでは、高活性化領域が画像の大部分を占めるのに対して、複雑なシナリオでは、これらの領域のサイズはずっと小さくなります。
特にEDFは、ImageNet-1Kサブセットのような複雑なシナリオにおいて、SOTAの結果を一貫して上回る。
- 参考スコア(独自算出の注目度): 60.470289963986716
- License:
- Abstract: Dataset distillation has demonstrated strong performance on simple datasets like CIFAR, MNIST, and TinyImageNet but struggles to achieve similar results in more complex scenarios. In this paper, we propose EDF (emphasizes the discriminative features), a dataset distillation method that enhances key discriminative regions in synthetic images using Grad-CAM activation maps. Our approach is inspired by a key observation: in simple datasets, high-activation areas typically occupy most of the image, whereas in complex scenarios, the size of these areas is much smaller. Unlike previous methods that treat all pixels equally when synthesizing images, EDF uses Grad-CAM activation maps to enhance high-activation areas. From a supervision perspective, we downplay supervision signals that have lower losses, as they contain common patterns. Additionally, to help the DD community better explore complex scenarios, we build the Complex Dataset Distillation (Comp-DD) benchmark by meticulously selecting sixteen subsets, eight easy and eight hard, from ImageNet-1K. In particular, EDF consistently outperforms SOTA results in complex scenarios, such as ImageNet-1K subsets. Hopefully, more researchers will be inspired and encouraged to improve the practicality and efficacy of DD. Our code and benchmark will be made public at https://github.com/NUS-HPC-AI-Lab/EDF.
- Abstract(参考訳): データセットの蒸留は、CIFAR、MNIST、TinyImageNetのような単純なデータセットで強いパフォーマンスを示しているが、より複雑なシナリオで同様の結果を達成するのに苦労している。
本稿では,Grad-CAMアクティベーションマップを用いて,合成画像における重要な識別領域を強化するデータセット蒸留法であるEDFを提案する。
単純なデータセットでは、高活性化領域が画像の大部分を占めるのに対して、複雑なシナリオでは、これらの領域のサイズはずっと小さくなります。
画像の合成時にすべてのピクセルを等しく扱う従来の方法とは異なり、EDFはGrad-CAMアクティベーションマップを使用して高活性化領域を強化する。
監視の観点からは、一般的なパターンを含むため、損失の少ない監視信号を軽視する。
さらに、DDコミュニティが複雑なシナリオをよりよく探求するために、ImageNet-1Kから16のサブセットを慎重に選択し、複雑なデータセット蒸留(Comp-DD)ベンチマークを構築します。
特にEDFは、ImageNet-1Kサブセットのような複雑なシナリオにおいて、SOTAの結果を一貫して上回る。
DDの実用性と有効性を改善するために、より多くの研究者がインスピレーションを受け、奨励されることを願っている。
私たちのコードとベンチマークはhttps://github.com/NUS-HPC-AI-Lab/EDF.orgで公開されます。
関連論文リスト
- Rethinking Image Super-Resolution from Training Data Perspectives [54.28824316574355]
画像超解像(SR)におけるトレーニングデータの効果について検討する。
そこで我々は,自動画像評価パイプラインを提案する。
その結果, (i) 圧縮アーチファクトの少ないデータセット, (ii) 被写体数によって判断される画像内多様性の高いデータセット, (iii) ImageNet や PASS からの大量の画像がSR性能に肯定的な影響を与えることがわかった。
論文 参考訳(メタデータ) (2024-09-01T16:25:04Z) - Low-Rank Similarity Mining for Multimodal Dataset Distillation [50.45577048854653]
マルチモーダルデータセット蒸留におけるローランド類似性マイニング(LoRS)を提案する。
LoRSは、画像とテキストのペアと基底真理類似性行列を蒸留し、低ランクの分解を効率とスケーラビリティに活用する。
論文 参考訳(メタデータ) (2024-06-06T07:05:20Z) - ATOM: Attention Mixer for Efficient Dataset Distillation [17.370852204228253]
本研究では,チャネルと空間的注意の混合を用いて,大規模データセットを効率よく抽出するモジュールを提案する。
どちらのタイプの注目も統合することで、ATOMモジュールは様々なコンピュータビジョンデータセットにまたがる優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-02T15:15:01Z) - DataDAM: Efficient Dataset Distillation with Attention Matching [15.300968899043498]
研究者たちは、さまざまなデータセットをまたいだ強力な一般化を維持することによって、ディープラーニングのトレーニングコストを最小化しようと長年努力してきた。
データセットに関する新たな研究は、より大きな実際のデータセットの情報を含む小さな合成セットを作成することで、トレーニングコストの削減を目的としている。
しかし、従来の方法で生成された合成データは、元のトレーニングデータと同様に、配布・差別することが保証されていない。
論文 参考訳(メタデータ) (2023-09-29T19:07:48Z) - Learning Efficient Representations for Enhanced Object Detection on
Large-scene SAR Images [16.602738933183865]
SAR(Synthetic Aperture Radar)画像のターゲットの検出と認識は難しい問題である。
近年開発されたディープラーニングアルゴリズムは,SAR画像の固有の特徴を自動的に学習することができる。
本稿では,効率的かつ堅牢なディープラーニングに基づくターゲット検出手法を提案する。
論文 参考訳(メタデータ) (2022-01-22T03:25:24Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z) - EDN: Salient Object Detection via Extremely-Downsampled Network [66.38046176176017]
画像全体のグローバルビューを効果的に学ぶために、極端なダウンサンプリング技術を使用するExtremely-Downsampled Network(EDN)を紹介します。
実験は、ednがリアルタイム速度でsart性能を達成することを実証する。
論文 参考訳(メタデータ) (2020-12-24T04:23:48Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
本研究では,多領域画像変換による領域不変特徴抽出のために,確率論的に一般アーキテクチャを定式化する。
そして、より精密な局所化のために、新しい勾配重み付き類似性活性化写像損失(Grad-SAM)を組み込んだ。
CMUSeasonsデータセットにおける提案手法の有効性を検証するために大規模な実験が行われた。
我々の性能は、最先端のイメージベースのローカライゼーションベースラインを中あるいは高精度で上回るか、あるいは上回る。
論文 参考訳(メタデータ) (2020-09-16T14:43:22Z) - Gradient-Induced Co-Saliency Detection [81.54194063218216]
Co-SOD(Co-saliency Detection)は、一般的な唾液前景を関連画像のグループに分割することを目的としている。
本稿では,人間の行動にインスパイアされた,勾配誘導型共分散検出法を提案する。
論文 参考訳(メタデータ) (2020-04-28T08:40:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。