Representation Shattering in Transformers: A Synthetic Study with Knowledge Editing
- URL: http://arxiv.org/abs/2410.17194v3
- Date: Wed, 08 Jan 2025 18:18:51 GMT
- Title: Representation Shattering in Transformers: A Synthetic Study with Knowledge Editing
- Authors: Kento Nishi, Maya Okawa, Rahul Ramesh, Mikail Khona, Hidenori Tanaka, Ekdeep Singh Lubana,
- Abstract summary: Knowledge Editing (KE) algorithms alter models' weights to perform targeted updates to incorrect, outdated, or otherwise unwanted factual associations.
Recent work has shown that applying KE can adversely affect models' factual recall accuracy and diminish their general reasoning abilities.
We show that KE inadvertently affects representations of entities beyond the targeted one, distorting relevant structures that allow a model to infer unseen knowledge about an entity.
- Score: 20.276952762837098
- License:
- Abstract: Knowledge Editing (KE) algorithms alter models' weights to perform targeted updates to incorrect, outdated, or otherwise unwanted factual associations. To better identify the possibilities and limitations of these approaches, recent work has shown that applying KE can adversely affect models' factual recall accuracy and diminish their general reasoning abilities. While these studies give broad insights into the potential harms of KE algorithms, e.g., via performance evaluations on benchmarks, we argue little is understood as to why such destructive failures occur. Is it possible KE methods distort representations of concepts beyond the targeted fact, hence hampering abilities at broad? If so, what is the extent of this distortion? Motivated by such questions, we define a novel synthetic task wherein a Transformer is trained from scratch to internalize a "structured" knowledge graph. The structure enforces relationships between entities of the graph, such that editing a factual association has "trickling effects" on other entities in the graph (e.g., altering X's parent is Y to Z affects who X's siblings' parent is). Through evaluations of edited models and analysis of extracted representations, we show that KE inadvertently affects representations of entities beyond the targeted one, distorting relevant structures that allow a model to infer unseen knowledge about an entity. We call this phenomenon representation shattering and demonstrate that it results in degradation of factual recall and reasoning performance more broadly. To corroborate our findings in a more naturalistic setup, we perform preliminary experiments with pre-trained Llama and Mamba models, reproducing the representation shattering effect therein as well. Overall, our work yields a precise mechanistic hypothesis to explain why KE has adverse effects on model abilities.
Related papers
- DAG-aware Transformer for Causal Effect Estimation [0.8192907805418583]
Causal inference is a critical task across fields such as healthcare, economics, and the social sciences.
In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges.
The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism.
arXiv Detail & Related papers (2024-10-13T23:17:58Z) - "Why" Has the Least Side Effect on Model Editing [25.67779910446609]
This paper delves into a critical factor-question type-by categorizing model editing questions.
Our findings reveal that the extent of performance degradation varies significantly across different question types.
We also examine the impact of batch size on side effects, discovering that increasing the batch size can mitigate performance drops.
arXiv Detail & Related papers (2024-09-27T12:05:12Z) - Towards Context-Aware Emotion Recognition Debiasing from a Causal Demystification Perspective via De-confounded Training [14.450673163785094]
Context-Aware Emotion Recognition (CAER) provides valuable semantic cues for recognizing the emotions of target persons.
Current approaches invariably focus on designing sophisticated structures to extract perceptually critical representations from contexts.
We present a Contextual Causal Intervention Module (CCIM) to de-confound the confounder.
arXiv Detail & Related papers (2024-07-06T05:29:02Z) - A Theoretical Understanding of Self-Correction through In-context Alignment [51.622068973630796]
Large language models (LLMs) are capable of improving their abilities purely by self-correction.
We show that when LLMs give relatively accurate self-examinations as rewards, they are capable of refining responses in an in-context way.
Inspired by these findings, we also illustrate applications of self-correction, such as defending against LLM jailbreaks.
arXiv Detail & Related papers (2024-05-28T22:33:02Z) - Context De-confounded Emotion Recognition [12.037240778629346]
Context-Aware Emotion Recognition (CAER) aims to perceive the emotional states of the target person with contextual information.
A long-overlooked issue is that a context bias in existing datasets leads to a significantly unbalanced distribution of emotional states.
This paper provides a causality-based perspective to disentangle the models from the impact of such bias, and formulate the causalities among variables in the CAER task.
arXiv Detail & Related papers (2023-03-21T15:12:20Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - Explainers in the Wild: Making Surrogate Explainers Robust to
Distortions through Perception [77.34726150561087]
We propose a methodology to evaluate the effect of distortions in explanations by embedding perceptual distances.
We generate explanations for images in the Imagenet-C dataset and demonstrate how using a perceptual distances in the surrogate explainer creates more coherent explanations for the distorted and reference images.
arXiv Detail & Related papers (2021-02-22T12:38:53Z) - Causal Expectation-Maximisation [70.45873402967297]
We show that causal inference is NP-hard even in models characterised by polytree-shaped graphs.
We introduce the causal EM algorithm to reconstruct the uncertainty about the latent variables from data about categorical manifest variables.
We argue that there appears to be an unnoticed limitation to the trending idea that counterfactual bounds can often be computed without knowledge of the structural equations.
arXiv Detail & Related papers (2020-11-04T10:25:13Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.