A Theoretical Understanding of Self-Correction through In-context Alignment
- URL: http://arxiv.org/abs/2405.18634v2
- Date: Mon, 18 Nov 2024 02:42:23 GMT
- Title: A Theoretical Understanding of Self-Correction through In-context Alignment
- Authors: Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, Yisen Wang,
- Abstract summary: Large language models (LLMs) are capable of improving their abilities purely by self-correction.
We show that when LLMs give relatively accurate self-examinations as rewards, they are capable of refining responses in an in-context way.
Inspired by these findings, we also illustrate applications of self-correction, such as defending against LLM jailbreaks.
- Score: 51.622068973630796
- License:
- Abstract: Going beyond mimicking limited human experiences, recent studies show initial evidence that, like humans, large language models (LLMs) are capable of improving their abilities purely by self-correction, i.e., correcting previous responses through self-examination, in certain circumstances. Nevertheless, little is known about how such capabilities arise. In this work, based on a simplified setup akin to an alignment task, we theoretically analyze self-correction from an in-context learning perspective, showing that when LLMs give relatively accurate self-examinations as rewards, they are capable of refining responses in an in-context way. Notably, going beyond previous theories on over-simplified linear transformers, our theoretical construction underpins the roles of several key designs of realistic transformers for self-correction: softmax attention, multi-head attention, and the MLP block. We validate these findings extensively on synthetic datasets. Inspired by these findings, we also illustrate novel applications of self-correction, such as defending against LLM jailbreaks, where a simple self-correction step does make a large difference. We believe that these findings will inspire further research on understanding, exploiting, and enhancing self-correction for building better foundation models.
Related papers
- Is Moral Self-correction An Innate Capability of Large Language Models? A Mechanistic Analysis to Self-correction [5.271054803267951]
We aim to answer two fundamental questions for moral self-correction.
We examine how different self-correction components interact to intervene the embedded morality within hidden states.
We propose a validation framework, self-distinguish, that requires effective self-correction.
arXiv Detail & Related papers (2024-10-27T16:52:21Z) - Training Language Models to Self-Correct via Reinforcement Learning [98.35197671595343]
Self-correction has been found to be largely ineffective in modern large language models (LLMs)
We develop a multi-turn online reinforcement learning approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data.
We find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on MATH and HumanEval.
arXiv Detail & Related papers (2024-09-19T17:16:21Z) - Large Language Models have Intrinsic Self-Correction Ability [16.831123666582755]
Large language models suffer from hallucinations that will cause performance degradation.
One promising solution to improve the LLMs' performance is to ask LLMs to revise their answer after generation.
In intrinsic self-correction is considered a promising direction because it does not utilize external knowledge.
arXiv Detail & Related papers (2024-06-21T22:29:40Z) - On the Intrinsic Self-Correction Capability of LLMs: Uncertainty and Latent Concept [36.27550578296276]
Large Language Models (LLMs) are able to improve their responses when instructed to do so, a capability known as self-correction.
In intrinsic self-correction is evident in various applications, but how and why it is effective remains unknown.
We show that intrinsic self-correction can be progressively improved, allowing it to approach a converged state.
arXiv Detail & Related papers (2024-06-04T14:55:43Z) - Small Language Models Need Strong Verifiers to Self-Correct Reasoning [69.94251699982388]
Self-correction has emerged as a promising solution to boost the reasoning performance of large language models (LLMs)
This work explores whether small (= 13B) language models (LMs) have the ability of self-correction on reasoning tasks with minimal inputs from stronger LMs.
arXiv Detail & Related papers (2024-04-26T03:41:28Z) - When Hindsight is Not 20/20: Testing Limits on Reflective Thinking in Large Language Models [15.781930031346105]
Self-reflection enhances performance in TruthfulQA, but adversely affects results in HotpotQA.
We find that self-reflection shows the most benefit when models are less likely to be correct initially, and when overall question difficulty is higher.
Based on our findings, we propose guidelines for decisions on when to implement self-reflection.
arXiv Detail & Related papers (2024-04-14T02:47:32Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
Large language models (LLMs) often struggle with factual inaccuracies, even when they hold relevant knowledge.
We leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality.
We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks.
arXiv Detail & Related papers (2024-02-14T15:52:42Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
We take a closer look at the self-verification abilities of large language models (LLMs) in the context of logical reasoning.
Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods.
arXiv Detail & Related papers (2023-11-14T07:13:10Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
Large Language Models (LLMs) have emerged as a groundbreaking technology with their unparalleled text generation capabilities.
Concerns persist regarding the accuracy and appropriateness of their generated content.
A contemporary methodology, self-correction, has been proposed as a remedy to these issues.
arXiv Detail & Related papers (2023-10-03T04:56:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.